Unconventional cold vortex as precursor to historic early summer heatwaves in North China 2023

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES npj Climate and Atmospheric Science Pub Date : 2024-07-15 DOI:10.1038/s41612-024-00718-x
Boqi Liu, Yanan Duan, Shuangmei Ma, Yuhan Yan, Congwen Zhu
{"title":"Unconventional cold vortex as precursor to historic early summer heatwaves in North China 2023","authors":"Boqi Liu, Yanan Duan, Shuangmei Ma, Yuhan Yan, Congwen Zhu","doi":"10.1038/s41612-024-00718-x","DOIUrl":null,"url":null,"abstract":"In mid-June to July 2023, North China witnessed extreme heatwaves, marked by intense near-surface warming with an advanced seasonal cycle of local air temperature. An unconventional upper-tropospheric cold vortex in early June, deviating from conventional “heat dome” patterns, preceded the heatwave extremes. The zonal SSTA gradient in Indo-Pacific warm pool initially suppressed Indian summer monsoon convection, which stimulated the cold vortex around North China via a tropical-extratropical teleconnection. This anomaly intensified the air-land thermal contrast, leading to increased sensible heating and reduced soil moisture in situ. The drier soil conditions maintained and further augmented sensible heating, escalating surface air temperature, and culminating in extraordinary heatwaves. The air column was then destabilized to mitigate the upper-level cold vortex. Historical records corroborate the extremity of the air-sea interactions in 2023. The ECMWF real-time subseasonal-to-seasonal (S2S) forecasts successfully capture the air-land feedback in both cold vortex and heatwave stages, albeit with an underestimation of heatwave intensity due to biases in soil moisture anomalies. Consequently, the initial cold vortex condition and air-land-sea interactions yield S2S predictability to the historic 2023 heatwaves in North China.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00718-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00718-x","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In mid-June to July 2023, North China witnessed extreme heatwaves, marked by intense near-surface warming with an advanced seasonal cycle of local air temperature. An unconventional upper-tropospheric cold vortex in early June, deviating from conventional “heat dome” patterns, preceded the heatwave extremes. The zonal SSTA gradient in Indo-Pacific warm pool initially suppressed Indian summer monsoon convection, which stimulated the cold vortex around North China via a tropical-extratropical teleconnection. This anomaly intensified the air-land thermal contrast, leading to increased sensible heating and reduced soil moisture in situ. The drier soil conditions maintained and further augmented sensible heating, escalating surface air temperature, and culminating in extraordinary heatwaves. The air column was then destabilized to mitigate the upper-level cold vortex. Historical records corroborate the extremity of the air-sea interactions in 2023. The ECMWF real-time subseasonal-to-seasonal (S2S) forecasts successfully capture the air-land feedback in both cold vortex and heatwave stages, albeit with an underestimation of heatwave intensity due to biases in soil moisture anomalies. Consequently, the initial cold vortex condition and air-land-sea interactions yield S2S predictability to the historic 2023 heatwaves in North China.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非常规冷涡是 2023 年华北地区历史性初夏热浪的前兆
2023 年 6 月中旬至 7 月,华北地区出现了极端热浪,其特点是近地面强烈升温,当地气温的季节周期提前。在出现极端热浪之前,6 月初出现了非常规的高层冷涡,与传统的 "热穹 "模式不同。印度-太平洋暖池的带状 SSTA 梯度最初抑制了印度夏季季风对流,通过热带-南太平洋遥联系刺激了华北周围的冷涡。这种反常现象加剧了陆空热力对比,导致显热增加和原地土壤湿度降低。较干燥的土壤条件维持并进一步加剧了显热,使地表气温升高,最终引发了异常热浪。随后,气柱失稳,缓解了高层冷涡。历史记录证实了 2023 年海气相互作用的极端性。ECMWF 的实时副季对季(S2S)预报成功捕捉到了冷涡和热浪阶段的空陆反馈,尽管由于土壤水分异常的偏差而低估了热浪强度。因此,初始冷涡条件和海陆空相互作用可对华北地区 2023 年的历史热浪进行 S2S 预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
期刊最新文献
Predictability and prediction skill of summertime East/Japan Sea surface temperature events Risk assessment of glacial lake outburst flood in the Central Asian Tienshan Mountains Observational evidence reveals the significance of nocturnal chemistry in seasonal secondary organic aerosol formation Incorporating heat budget dynamics in a Transformer-based deep learning model for skillful ENSO prediction The role of sea surface salinity in ENSO forecasting in the 21st century
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1