{"title":"Electricity generated by upstream proton diffusion in two-dimensional nanochannels","authors":"Heyi Xia, Wanqi Zhou, Xinyue Qu, Wenbo Wang, Xiao Wang, Ruixi Qiao, Yongkang Zhang, Xin Wu, Chuang Yang, Baofu Ding, Ling-Yun Hu, Yang Ran, Kuang Yu, Sheng Hu, Jian-Feng Li, Hui-Ming Cheng, Hu Qiu, Jun Yin, Wanlin Guo, Ling Qiu","doi":"10.1038/s41565-024-01691-5","DOIUrl":null,"url":null,"abstract":"The movement of ions along the pressure-driven water flow in narrow channels, known as downstream ionic transport, has been observed since 1859 to induce a streaming potential and has enabled the creation of various hydrovoltaic devices. In contrast, here we demonstrate that proton movement opposing the water flow in two-dimensional nanochannels of MXene/poly(vinyl alcohol) films, termed upstream proton diffusion, can also generate electricity. The infiltrated water into the channel causes the dissociation of protons from functional groups on the channel surface, resulting in a high proton concentration inside the channel that drives the upstream proton diffusion. Combined with the particularly sluggish water diffusion in the channels, a small water droplet of 5 µl can generate a voltage of ~400 mV for over 330 min. Benefiting from the ultrathin and flexible nature of the film, a wearable device is built for collecting energy from human skin sweat. In contrast to the classical streaming potential relying on downstream ionic diffusion, an upstream proton diffusion within two-dimensional nanochannels is found to continuously generate electricity, advancing hydrovoltaic technology.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 9","pages":"1316-1322"},"PeriodicalIF":38.1000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-024-01691-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The movement of ions along the pressure-driven water flow in narrow channels, known as downstream ionic transport, has been observed since 1859 to induce a streaming potential and has enabled the creation of various hydrovoltaic devices. In contrast, here we demonstrate that proton movement opposing the water flow in two-dimensional nanochannels of MXene/poly(vinyl alcohol) films, termed upstream proton diffusion, can also generate electricity. The infiltrated water into the channel causes the dissociation of protons from functional groups on the channel surface, resulting in a high proton concentration inside the channel that drives the upstream proton diffusion. Combined with the particularly sluggish water diffusion in the channels, a small water droplet of 5 µl can generate a voltage of ~400 mV for over 330 min. Benefiting from the ultrathin and flexible nature of the film, a wearable device is built for collecting energy from human skin sweat. In contrast to the classical streaming potential relying on downstream ionic diffusion, an upstream proton diffusion within two-dimensional nanochannels is found to continuously generate electricity, advancing hydrovoltaic technology.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.