Deep mutational scanning reveals functional constraints and antibody-escape potential of Lassa virus glycoprotein complex

IF 25.5 1区 医学 Q1 IMMUNOLOGY Immunity Pub Date : 2024-07-15 DOI:10.1016/j.immuni.2024.06.013
{"title":"Deep mutational scanning reveals functional constraints and antibody-escape potential of Lassa virus glycoprotein complex","authors":"","doi":"10.1016/j.immuni.2024.06.013","DOIUrl":null,"url":null,"abstract":"<p>Lassa virus is estimated to cause thousands of human deaths per year, primarily due to spillovers from its natural host, <em>Mastomys</em> rodents. Efforts to create vaccines and antibody therapeutics must account for the evolutionary variability of the Lassa virus’s glycoprotein complex (GPC), which mediates viral entry into cells and is the target of neutralizing antibodies. To map the evolutionary space accessible to GPC, we used pseudovirus deep mutational scanning to measure how nearly all GPC amino-acid mutations affected cell entry and antibody neutralization. Our experiments defined functional constraints throughout GPC. We quantified how GPC mutations affected neutralization with a panel of monoclonal antibodies. All antibodies tested were escaped by mutations that existed among natural Lassa virus lineages. Overall, our work describes a biosafety-level-2 method to elucidate the mutational space accessible to GPC and shows how prospective characterization of antigenic variation could aid the design of therapeutics and vaccines.</p>","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"26 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2024.06.013","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lassa virus is estimated to cause thousands of human deaths per year, primarily due to spillovers from its natural host, Mastomys rodents. Efforts to create vaccines and antibody therapeutics must account for the evolutionary variability of the Lassa virus’s glycoprotein complex (GPC), which mediates viral entry into cells and is the target of neutralizing antibodies. To map the evolutionary space accessible to GPC, we used pseudovirus deep mutational scanning to measure how nearly all GPC amino-acid mutations affected cell entry and antibody neutralization. Our experiments defined functional constraints throughout GPC. We quantified how GPC mutations affected neutralization with a panel of monoclonal antibodies. All antibodies tested were escaped by mutations that existed among natural Lassa virus lineages. Overall, our work describes a biosafety-level-2 method to elucidate the mutational space accessible to GPC and shows how prospective characterization of antigenic variation could aid the design of therapeutics and vaccines.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度突变扫描揭示拉沙病毒糖蛋白复合物的功能限制和抗体逃逸潜力
据估计,拉沙病毒每年造成数千人死亡,主要是由于其自然宿主马斯托米斯啮齿动物的传播。研制疫苗和抗体疗法必须考虑到拉沙病毒糖蛋白复合物(GPC)的进化变异性,该复合物介导病毒进入细胞,是中和抗体的靶标。为了绘制 GPC 的进化空间图,我们使用伪病毒深度突变扫描来测量几乎所有 GPC 氨基酸突变对细胞进入和抗体中和的影响。我们的实验确定了整个 GPC 的功能限制。我们用一组单克隆抗体量化了 GPC 突变对中和的影响。所有测试的抗体都因存在于天然拉沙病毒系中的突变而逸散。总之,我们的工作描述了一种生物安全二级方法来阐明 GPC 可访问的突变空间,并展示了抗原变异的前瞻性特征描述如何有助于治疗药物和疫苗的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunity
Immunity 医学-免疫学
CiteScore
49.40
自引率
2.20%
发文量
205
审稿时长
6 months
期刊介绍: Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.
期刊最新文献
Cancer cells restrict immunogenicity of retrotransposon expression via distinct mechanisms A pan-family screen of nuclear receptors in immunocytes reveals ligand-dependent inflammasome control Acute suppression of mitochondrial ATP production prevents apoptosis and provides an essential signal for NLRP3 inflammasome activation Targeting the aminopeptidase ERAP enhances antitumor immunity by disrupting the NKG2A-HLA-E inhibitory checkpoint CAR T cells in autoimmune disease: On the road to remission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1