{"title":"Mutagenicity evaluation of methyl tertiary- butyl ether in multiple tissues of transgenic rats following whole body inhalation exposure","authors":"B. Bhaskar Gollapudi, Erik K. Rushton","doi":"10.1002/em.22616","DOIUrl":null,"url":null,"abstract":"<p>Methyl <i>tertiary</i>-butyl ether (MTBE) is used as a component of motor vehicle fuel to enhance combustion efficiency and to reduce emissions of carbon monoxide and nitrogen oxides. Although MTBE was largely negative in the in vitro and in vivo genotoxicity studies, isolated reports of positive findings along with the observation of tumors in the rat cancer bioassays raised concern for its in vivo mutagenic potential. To investigate this, transgenic male Big Blue Fischer 344 rats were exposed to 0 (negative control), 400, 1000, and 3000 ppm MTBE via whole body inhalation for 28 consecutive days, 6 h/day. Mutant frequencies (MF) at the <i>cII</i> locus of the transgene in the nasal epithelium (portal of entry tissue), liver (site of primary metabolism), bone marrow (rapidly proliferating tissue), and kidney (tumor target) were analyzed (5 rats/exposure group) following a 3-day post-exposure manifestation period. MTBE did not induce a mutagenic response in any of the tissues investigated. The adequacy of the experimental conditions to detect induced mutations was confirmed by utilizing tissue samples from animals treated with the known mutagen ethyl nitrosourea. These data provide support to the conclusion that MTBE is not an in vivo mutagen and male rat kidney tumors are not likely the result of a mutagenic mode of action.</p>","PeriodicalId":11791,"journal":{"name":"Environmental and Molecular Mutagenesis","volume":"65 6-7","pages":"222-229"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/em.22616","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Molecular Mutagenesis","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/em.22616","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Methyl tertiary-butyl ether (MTBE) is used as a component of motor vehicle fuel to enhance combustion efficiency and to reduce emissions of carbon monoxide and nitrogen oxides. Although MTBE was largely negative in the in vitro and in vivo genotoxicity studies, isolated reports of positive findings along with the observation of tumors in the rat cancer bioassays raised concern for its in vivo mutagenic potential. To investigate this, transgenic male Big Blue Fischer 344 rats were exposed to 0 (negative control), 400, 1000, and 3000 ppm MTBE via whole body inhalation for 28 consecutive days, 6 h/day. Mutant frequencies (MF) at the cII locus of the transgene in the nasal epithelium (portal of entry tissue), liver (site of primary metabolism), bone marrow (rapidly proliferating tissue), and kidney (tumor target) were analyzed (5 rats/exposure group) following a 3-day post-exposure manifestation period. MTBE did not induce a mutagenic response in any of the tissues investigated. The adequacy of the experimental conditions to detect induced mutations was confirmed by utilizing tissue samples from animals treated with the known mutagen ethyl nitrosourea. These data provide support to the conclusion that MTBE is not an in vivo mutagen and male rat kidney tumors are not likely the result of a mutagenic mode of action.
期刊介绍:
Environmental and Molecular Mutagenesis publishes original research manuscripts, reviews and commentaries on topics related to six general areas, with an emphasis on subject matter most suited for the readership of EMM as outlined below. The journal is intended for investigators in fields such as molecular biology, biochemistry, microbiology, genetics and epigenetics, genomics and epigenomics, cancer research, neurobiology, heritable mutation, radiation biology, toxicology, and molecular & environmental epidemiology.