The Psathyrostachys juncea DWARF27 gene encodes an all-trans-/9-cis-beta-carotene isomerase in the control of plant branches in Arabidopsis thaliana by strigolactones.

IF 2.1 3区 生物学 Q3 GENETICS & HEREDITY G3: Genes|Genomes|Genetics Pub Date : 2024-09-04 DOI:10.1093/g3journal/jkae147
Xiaomin Ren, Qian Ai, Zhen Li, Qiao Zhao, Lan Yun
{"title":"The Psathyrostachys juncea DWARF27 gene encodes an all-trans-/9-cis-beta-carotene isomerase in the control of plant branches in Arabidopsis thaliana by strigolactones.","authors":"Xiaomin Ren, Qian Ai, Zhen Li, Qiao Zhao, Lan Yun","doi":"10.1093/g3journal/jkae147","DOIUrl":null,"url":null,"abstract":"<p><p>Strigolactones (SLs), carotenoid-derived plant hormones, govern the growth and development of both monocotyledonous and dicotyledonous plants. DWARF27 (D27), a plastid-targeted protein located at the initiation site of the core pathway in SL synthesis, plays a crucial role in regulating plant tillering (branching). In rice (Oryza sativa) and wheat (Triticum aestivum), OsD27 and TaD27-B proteins modulate the number of plant tillers by participating in SL biosynthesis. Similarly, AtD27 in Arabidopsis thaliana is required for SL production and has a significant impact on phenotypic changes related to branching. At the same time, TaD27 in wheat has been confirmed as a functional orthologue of AtD27 in Arabidopsis, and both Psathyrostachys juncea and wheat belong to the Triticeae, so we speculate that PjD27 gene may also have the same function as AtD27 in Arabidopsis. In this study, we initially screened the PjD27 gene significantly associated with tillering regulation through transcriptome data analysis and subsequently validated its expression levels using qRT-PCR analysis. Furthermore, we conducted phylogenetic analysis using amino acid sequences from 41 species, including P. juncea, to identify closely related species of P. juncea. Here, we analyze the conservation of D27 protein among P. juncea, rice, wheat, and Arabidopsis and provide preliminary evidence suggesting that PjD27 protein is an orthologue of D27 protein in Arabidopsis. Through reverse genetics, we demonstrate the crucial role of PjD27 in regulating plant branching, establishing it as a functional orthologue of D27 in Arabidopsis. Furthermore, following transient expression in tobacco (Nicotiana tabacum), we demonstrate that the subcellular location of the PjD27 protein is consistent with the cellular location of TaD27-B in wheat. Quantitative analysis of SLs shows that PjD27 is a key gene regulating tillering (branching) by participating in SL biosynthesis. By elucidating the function of the PjD27 gene, our findings provide valuable genetic resources for new germplasm creation and improving grain yield in P. juncea.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373637/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae147","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Strigolactones (SLs), carotenoid-derived plant hormones, govern the growth and development of both monocotyledonous and dicotyledonous plants. DWARF27 (D27), a plastid-targeted protein located at the initiation site of the core pathway in SL synthesis, plays a crucial role in regulating plant tillering (branching). In rice (Oryza sativa) and wheat (Triticum aestivum), OsD27 and TaD27-B proteins modulate the number of plant tillers by participating in SL biosynthesis. Similarly, AtD27 in Arabidopsis thaliana is required for SL production and has a significant impact on phenotypic changes related to branching. At the same time, TaD27 in wheat has been confirmed as a functional orthologue of AtD27 in Arabidopsis, and both Psathyrostachys juncea and wheat belong to the Triticeae, so we speculate that PjD27 gene may also have the same function as AtD27 in Arabidopsis. In this study, we initially screened the PjD27 gene significantly associated with tillering regulation through transcriptome data analysis and subsequently validated its expression levels using qRT-PCR analysis. Furthermore, we conducted phylogenetic analysis using amino acid sequences from 41 species, including P. juncea, to identify closely related species of P. juncea. Here, we analyze the conservation of D27 protein among P. juncea, rice, wheat, and Arabidopsis and provide preliminary evidence suggesting that PjD27 protein is an orthologue of D27 protein in Arabidopsis. Through reverse genetics, we demonstrate the crucial role of PjD27 in regulating plant branching, establishing it as a functional orthologue of D27 in Arabidopsis. Furthermore, following transient expression in tobacco (Nicotiana tabacum), we demonstrate that the subcellular location of the PjD27 protein is consistent with the cellular location of TaD27-B in wheat. Quantitative analysis of SLs shows that PjD27 is a key gene regulating tillering (branching) by participating in SL biosynthesis. By elucidating the function of the PjD27 gene, our findings provide valuable genetic resources for new germplasm creation and improving grain yield in P. juncea.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拟南芥 DWARF27 基因编码一种全反式-/9-顺式-beta-胡萝卜素异构酶,该异构酶通过绞股蓝内酯控制拟南芥的植物分枝。
植物内酯(SLs)是源自类胡萝卜素的植物激素,对单子叶植物和双子叶植物的生长发育都有调节作用。DWARF27(D27)是一种质体靶蛋白,位于SL合成核心途径的起始位点,在调节植物分蘖(分枝)过程中起着至关重要的作用。在水稻(Oryza sativa)和小麦(Triticum aestivum)中,OsD27 和 TaD27-B 蛋白通过参与 SL 生物合成来调节植物分蘖的数量。同样,拟南芥中的 AtD27 也是 SL 生成所必需的,并对与分枝相关的表型变化有显著影响。同时,小麦中的 TaD27 已被证实是拟南芥中 AtD27 的功能直向同源物,而君子兰和小麦都属于三叶草科,因此我们推测 PjD27 基因也可能与拟南芥中的 AtD27 具有相同的功能。在本研究中,我们首先通过转录组数据分析筛选出与分蘖调控显著相关的 PjD27 基因,随后利用 qRT-PCR 分析验证了其表达水平。此外,我们还利用包括君子兰在内的 41 个物种的氨基酸序列进行了系统发育分析,以确定君子兰的近缘物种。在此,我们分析了 D27 蛋白在君子兰、水稻、小麦和拟南芥中的保守性,并提供了初步证据表明 PjD27 蛋白是拟南芥中 D27 蛋白的直向同源物。通过反向遗传学,我们证明了 PjD27 在调控植物分枝中的关键作用,确立了它是拟南芥中 D27 的功能直向同源物。此外,在烟草(Nicotiana tabacum)中瞬时表达后,我们证明了 PjD27 蛋白的亚细胞位置与 TaD27-B 在小麦中的细胞位置一致。SLs的定量分析表明,PjD27是通过参与SLs生物合成来调节分蘖(分枝)的关键基因。通过阐明 PjD27 基因的功能,我们的研究结果为杜父麦新种质的创造和提高谷物产量提供了宝贵的遗传资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
G3: Genes|Genomes|Genetics
G3: Genes|Genomes|Genetics GENETICS & HEREDITY-
CiteScore
5.10
自引率
3.80%
发文量
305
审稿时长
3-8 weeks
期刊介绍: G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights. G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.
期刊最新文献
Female germline expression of OVO transcription factor bridges Drosophila generations. Genetic Screening Reveals Cone Cell-Specific Factors as Common Genetic Targets Modulating Rival-Induced Prolonged Mating in male Drosophila melanogaster. Thousands of trait-specific KASP markers designed for diverse breeding applications in rice (Oryza sativa). New mutations in the core Schizosaccharomyces pombe spindle pole body scaffold Ppc89 reveal separable functions in regulating cell division. Codon optimality influences homeostatic gene expression in zebrafish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1