{"title":"Intramolecular lactam cross-linking of short oligoureas","authors":"Paulina Bachurska-Szpala, Rafał Chojnacki, Karolina Pulka-Ziach","doi":"10.1002/psc.3644","DOIUrl":null,"url":null,"abstract":"<p>Oligourea foldamers are known to fold into 2.5-helices, stabilized by three-centered hydrogen bonds, which makes them conformationally more rigid than peptides. Nevertheless, the folding propensity and conformational stability in solution depend on the length of the oligomer, as well as the temperature, solvent, and so forth. In the peptide field, there are many approaches known for constraining the backbone in the folded conformation, including the stapling of side chains by disulfide bridges, lactam formation, ring closing metathesis reaction, and others. In this work, we linked side chains by lactam bridges of short oligoureas (four residues), containing Glu- and Lys-like residues. The designed oligoureas differed in the position of the Glu-like residue. Next, the conformational properties of linear and cyclic compounds were studied in protic solvent (methanol) by nuclear magnetic resonance and circular dichroism. Importantly, it was discovered that larger macrocycles (24-membered) are more tolerated with respect to the helical turn than smaller macrocycles (19-membered) under the studied conditions.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.3644","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oligourea foldamers are known to fold into 2.5-helices, stabilized by three-centered hydrogen bonds, which makes them conformationally more rigid than peptides. Nevertheless, the folding propensity and conformational stability in solution depend on the length of the oligomer, as well as the temperature, solvent, and so forth. In the peptide field, there are many approaches known for constraining the backbone in the folded conformation, including the stapling of side chains by disulfide bridges, lactam formation, ring closing metathesis reaction, and others. In this work, we linked side chains by lactam bridges of short oligoureas (four residues), containing Glu- and Lys-like residues. The designed oligoureas differed in the position of the Glu-like residue. Next, the conformational properties of linear and cyclic compounds were studied in protic solvent (methanol) by nuclear magnetic resonance and circular dichroism. Importantly, it was discovered that larger macrocycles (24-membered) are more tolerated with respect to the helical turn than smaller macrocycles (19-membered) under the studied conditions.
期刊介绍:
The official Journal of the European Peptide Society EPS
The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews.
The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.