首页 > 最新文献

Journal of Peptide Science最新文献

英文 中文
Solid-Phase Synthesis of Peptide Hydrazides: Moving Toward Green Chemistry
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-06 DOI: 10.1002/psc.70010
Maria Leko, Polina Filippova, Karin Rustler, Thomas Bruckdorfer, Sergey Burov

Peptide hydrazides are widely applied as precursors of peptide thioesters, valuable building blocks for the synthesis of proteins by native chemical ligation. In addition, they can be applied for the selective modification of cargo or carrier molecules using hydrazone ligation technique. In this work, we describe key aspects of solid phase synthesis of peptide hydrazides on hydrazine 2CT and hydrazone resin. Special attention is paid to the optimization of synthetic procedures using “preferred” and “usable” organic solvents. Thus, optimization of 2-CTC resin loading with Fmoc-hydrazine permits to reduce reagents consumption and avoid DMF and DCM application. The final products can be released from the polymer support with simultaneous BOC removal with 5% HCl (aq) in acetone. Although this protocol demands subsequent peptide deprotection to remove other protecting groups, it benefits of significantly reduced TFA consumption. Because of improved stability in acidic conditions and the possibility of selective Mtt removal and peptide cleavage in green solvents, hydrazone resin can be considered as a useful alternative for peptide hydrazides synthesis. Obtained results can simplify the synthesis of peptide building blocks for native chemical ligation using CMR-free reagents and solvents.

{"title":"Solid-Phase Synthesis of Peptide Hydrazides: Moving Toward Green Chemistry","authors":"Maria Leko,&nbsp;Polina Filippova,&nbsp;Karin Rustler,&nbsp;Thomas Bruckdorfer,&nbsp;Sergey Burov","doi":"10.1002/psc.70010","DOIUrl":"https://doi.org/10.1002/psc.70010","url":null,"abstract":"<div>\u0000 \u0000 <p>Peptide hydrazides are widely applied as precursors of peptide thioesters, valuable building blocks for the synthesis of proteins by native chemical ligation. In addition, they can be applied for the selective modification of cargo or carrier molecules using hydrazone ligation technique. In this work, we describe key aspects of solid phase synthesis of peptide hydrazides on hydrazine 2CT and hydrazone resin. Special attention is paid to the optimization of synthetic procedures using “preferred” and “usable” organic solvents. Thus, optimization of 2-CTC resin loading with Fmoc-hydrazine permits to reduce reagents consumption and avoid DMF and DCM application. The final products can be released from the polymer support with simultaneous BOC removal with 5% HCl (aq) in acetone. Although this protocol demands subsequent peptide deprotection to remove other protecting groups, it benefits of significantly reduced TFA consumption. Because of improved stability in acidic conditions and the possibility of selective Mtt removal and peptide cleavage in green solvents, hydrazone resin can be considered as a useful alternative for peptide hydrazides synthesis. Obtained results can simplify the synthesis of peptide building blocks for native chemical ligation using CMR-free reagents and solvents.</p>\u0000 </div>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 4","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143554572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preventing Protein Self-Association Through Strategic Covalent Modification
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-06 DOI: 10.1002/psc.70008
Swetha Chintala, Simon H. Friedman

Protein self-interaction leading to aggregation is a major challenge facing protein pharmaceuticals. It leads to a range of problems, including increases in immunogenicity and loss of activity. In this work, we describe an approach for blocking or antagonizing the quaternary interactions that drive self-association. We applied the approach to glucagon, a therapeutic peptide known for its propensity to form fibrils due to self-interaction. We synthesized a regio-pure common feedstock that allowed easy modification with potential blocking peptides that represented a range of chemical types (anionic, cationic, polar, and nonpolar). From these synthesized materials, we identified two modified glucagons that showed significant stabilization against fibril formation compared with unmodified glucagon. This was confirmed by three complementary biophysical techniques. Both successful modifications introduced excess net charge to glucagon, consistent with overall electrostatic repulsion being at the root of the observed fibrillation resistance. This approach can potentially be applied to other therapeutic proteins that suffer from the problems associated with self-association.

{"title":"Preventing Protein Self-Association Through Strategic Covalent Modification","authors":"Swetha Chintala,&nbsp;Simon H. Friedman","doi":"10.1002/psc.70008","DOIUrl":"https://doi.org/10.1002/psc.70008","url":null,"abstract":"<div>\u0000 \u0000 <p>Protein self-interaction leading to aggregation is a major challenge facing protein pharmaceuticals. It leads to a range of problems, including increases in immunogenicity and loss of activity. In this work, we describe an approach for blocking or antagonizing the quaternary interactions that drive self-association. We applied the approach to glucagon, a therapeutic peptide known for its propensity to form fibrils due to self-interaction. We synthesized a regio-pure common feedstock that allowed easy modification with potential blocking peptides that represented a range of chemical types (anionic, cationic, polar, and nonpolar). From these synthesized materials, we identified two modified glucagons that showed significant stabilization against fibril formation compared with unmodified glucagon. This was confirmed by three complementary biophysical techniques. Both successful modifications introduced excess net charge to glucagon, consistent with overall electrostatic repulsion being at the root of the observed fibrillation resistance. This approach can potentially be applied to other therapeutic proteins that suffer from the problems associated with self-association.</p>\u0000 </div>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 4","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and Characterization of a Novel GAPDH-Derived Antimicrobial Peptide From Jellyfish
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-05 DOI: 10.1002/psc.70011
Jingwen Liu, An Li, Yueyue Li, Jing Li, Xiaoyu Geng, Junyi Wan, Qianqian Lu, Qingqing Wang, Mingke Wang, Jishun Yang

Marine organisms serve as a rich source of bioactive natural compounds, including antimicrobial agents. Jellyfish, which are ancient marine invertebrates with hundreds of millions of years of evolutionary history, have been in continuous contact with a diverse array of pathogenic microorganisms from seawater, which may give rise to a distinctive innate immune system and related defensive molecules. However, it is difficult and inefficient to isolate active ingredients directly from jellyfish for enrichment, though few jellyfish-sourced antimicrobial peptides (AMPs) have been reported. In this study, we utilized transcriptomic big data with bioinformatic tools to dig deeper into potential antimicrobial components in jellyfish, and identified a new AMP JFP-2826 from Rhopilema esculentum. The 20-mer peptide exhibited an alpha-helix structure and showed antimicrobial activity against selected bacterial strains; more importantly, JFP-2826 demonstrated good selectivity for marine-specific Vibrio including Vibrio vulnificus. Sequence analysis of the full-length protein of JFP-2826 revealed that it is derived from the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is probably produced through enzymatic cleavage of the N-terminal fragment. This suggests that GAPDH of jellyfish might have a newly discovered antimicrobial-related function that is conducted by releasing JFP-2826-like cryptic peptides. JFP-2826 can be subjected to further structural modifications and optimizations to potentially become a potent lead peptide for the development of novel antimicrobial drugs treating infections of marine pathogens.

{"title":"Identification and Characterization of a Novel GAPDH-Derived Antimicrobial Peptide From Jellyfish","authors":"Jingwen Liu,&nbsp;An Li,&nbsp;Yueyue Li,&nbsp;Jing Li,&nbsp;Xiaoyu Geng,&nbsp;Junyi Wan,&nbsp;Qianqian Lu,&nbsp;Qingqing Wang,&nbsp;Mingke Wang,&nbsp;Jishun Yang","doi":"10.1002/psc.70011","DOIUrl":"https://doi.org/10.1002/psc.70011","url":null,"abstract":"<p>Marine organisms serve as a rich source of bioactive natural compounds, including antimicrobial agents. Jellyfish, which are ancient marine invertebrates with hundreds of millions of years of evolutionary history, have been in continuous contact with a diverse array of pathogenic microorganisms from seawater, which may give rise to a distinctive innate immune system and related defensive molecules. However, it is difficult and inefficient to isolate active ingredients directly from jellyfish for enrichment, though few jellyfish-sourced antimicrobial peptides (AMPs) have been reported. In this study, we utilized transcriptomic big data with bioinformatic tools to dig deeper into potential antimicrobial components in jellyfish, and identified a new AMP JFP-2826 from <i>Rhopilema esculentum</i>. The 20-mer peptide exhibited an alpha-helix structure and showed antimicrobial activity against selected bacterial strains; more importantly, JFP-2826 demonstrated good selectivity for marine-specific <i>Vibrio</i> including <i>Vibrio vulnificus</i>. Sequence analysis of the full-length protein of JFP-2826 revealed that it is derived from the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is probably produced through enzymatic cleavage of the N-terminal fragment. This suggests that GAPDH of jellyfish might have a newly discovered antimicrobial-related function that is conducted by releasing JFP-2826-like cryptic peptides. JFP-2826 can be subjected to further structural modifications and optimizations to potentially become a potent lead peptide for the development of novel antimicrobial drugs treating infections of marine pathogens.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 4","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.70011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143554391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cancer-Targeting Peptides Functionalized With Polyarginine Enables GRP78-Dependent Cell Uptake and siRNA Delivery Within the DU145 Prostate Cancer Cells
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-18 DOI: 10.1002/psc.70007
George Hilan, Grace Daniel, Filiz Collak, David Sabatino, William G. Willmore

This study investigated a peptide-based GRP78-targeting strategy for short-interfering (si) RNA delivery in cancer cells. Synthetic fluorescein-labeled amphiphilic peptides composed of the hydrophobic cell surface (cs) GRP78-targeting and hydrophilic, polycationic arginine-rich cell penetrating peptides demonstrated GRP78-dependent cell uptake in the DU145 prostate cancer cells, and to a lesser extent in the non-cancerous human lung fibroblast WI-38 cell line. Mechanistic studies revealed energy-dependent GRP78 receptor-mediated endocytosis of the GRP78-targeting peptide with polyarginine (W1-R9). The cytosolic accumulation of this peptide underscored its potential utility in siRNA delivery. Peptide:siRNA complexes formed stably condensed nanoparticles, with calcium functioning as an ionic stabilizer and additive promoting endosomal siRNA escape for RNA interference (RNAi) activity. Preliminary peptide-based siRNA transfections in the DU145 cells demonstrated that GRP78 knockdown led to an interplay in between pro-survival and cell death outcomes under ER stress induction. Thus, the GRP78-targeting polyarginine peptides enables efficient cell uptake for specific siRNA delivery in the DU145 cells. This class of bio-active synthetic peptides is important for the investigation of cancer biology, leading to the innovation of cancer-targeted gene delivery and therapy approaches.

{"title":"Cancer-Targeting Peptides Functionalized With Polyarginine Enables GRP78-Dependent Cell Uptake and siRNA Delivery Within the DU145 Prostate Cancer Cells","authors":"George Hilan,&nbsp;Grace Daniel,&nbsp;Filiz Collak,&nbsp;David Sabatino,&nbsp;William G. Willmore","doi":"10.1002/psc.70007","DOIUrl":"https://doi.org/10.1002/psc.70007","url":null,"abstract":"<p>This study investigated a peptide-based GRP78-targeting strategy for short-interfering (si) RNA delivery in cancer cells. Synthetic fluorescein-labeled amphiphilic peptides composed of the hydrophobic cell surface (cs) GRP78-targeting and hydrophilic, polycationic arginine-rich cell penetrating peptides demonstrated GRP78-dependent cell uptake in the DU145 prostate cancer cells, and to a lesser extent in the non-cancerous human lung fibroblast WI-38 cell line. Mechanistic studies revealed energy-dependent GRP78 receptor-mediated endocytosis of the GRP78-targeting peptide with polyarginine (W1-R9). The cytosolic accumulation of this peptide underscored its potential utility in siRNA delivery. Peptide:siRNA complexes formed stably condensed nanoparticles, with calcium functioning as an ionic stabilizer and additive promoting endosomal siRNA escape for RNA interference (RNAi) activity. Preliminary peptide-based siRNA transfections in the DU145 cells demonstrated that GRP78 knockdown led to an interplay in between pro-survival and cell death outcomes under ER stress induction. Thus, the GRP78-targeting polyarginine peptides enables efficient cell uptake for specific siRNA delivery in the DU145 cells. This class of bio-active synthetic peptides is important for the investigation of cancer biology, leading to the innovation of cancer-targeted gene delivery and therapy approaches.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 3","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.70007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Versatile Features of an Antibody Mimetic Peptide and Its Variants
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-17 DOI: 10.1002/psc.70005
Simon Dolles, Simon Leukel, Sabrina Gensberger-Reigl, Anette Rohrhofer, Lena Rauch-Wirth, Kübra Kaygisiz, Christopher V. Synatschke, Jan Münch, Barbara Schmidt, Monika Pischetsrieder, Jutta Eichler

Antibody mimetic peptides have evolved as versatile tools for biomedical applications, based on their ability to interfere with protein–protein interactions. We had previously designed a functional mimic of the broadly neutralizing HIV-1 antibody b12 that recognizes the CD4 binding site of the HIV-1 envelope glycoprotein gp120. The molecular details of the interaction of a linear variant of this peptide (H1H3s) with gp120 have now been characterized through cross-linking mass spectrometry, confirming the proposed involvement of the CD4 binding site of gp120 in the interaction. In addition, a variant of the b12 mimetic peptide composed mostly of D-amino acids was shown to be stable towards proteolytic degradation, while the binding and HIV-1 neutralizing properties were largely preserved. Furthermore, a peptide variant in which aspartate residues were replaced with lysine was shown to strongly enhance infection of cells with HIV-1 and GALV glycoprotein pseudotyped viral vectors, respectively, introducing this peptide as a tool to facilitate retroviral gene transfer. Collectively, the presented results highlight the versatile potential therapeutic and gene transfer applications of H1H3s and its variants in particular, as well as antibody mimetic peptides in general.

{"title":"Versatile Features of an Antibody Mimetic Peptide and Its Variants","authors":"Simon Dolles,&nbsp;Simon Leukel,&nbsp;Sabrina Gensberger-Reigl,&nbsp;Anette Rohrhofer,&nbsp;Lena Rauch-Wirth,&nbsp;Kübra Kaygisiz,&nbsp;Christopher V. Synatschke,&nbsp;Jan Münch,&nbsp;Barbara Schmidt,&nbsp;Monika Pischetsrieder,&nbsp;Jutta Eichler","doi":"10.1002/psc.70005","DOIUrl":"https://doi.org/10.1002/psc.70005","url":null,"abstract":"<p>Antibody mimetic peptides have evolved as versatile tools for biomedical applications, based on their ability to interfere with protein–protein interactions. We had previously designed a functional mimic of the broadly neutralizing HIV-1 antibody b12 that recognizes the CD4 binding site of the HIV-1 envelope glycoprotein gp120. The molecular details of the interaction of a linear variant of this peptide (H1H3s) with gp120 have now been characterized through cross-linking mass spectrometry, confirming the proposed involvement of the CD4 binding site of gp120 in the interaction. In addition, a variant of the b12 mimetic peptide composed mostly of D-amino acids was shown to be stable towards proteolytic degradation, while the binding and HIV-1 neutralizing properties were largely preserved. Furthermore, a peptide variant in which aspartate residues were replaced with lysine was shown to strongly enhance infection of cells with HIV-1 and GALV glycoprotein pseudotyped viral vectors, respectively, introducing this peptide as a tool to facilitate retroviral gene transfer. Collectively, the presented results highlight the versatile potential therapeutic and gene transfer applications of H1H3s and its variants in particular, as well as antibody mimetic peptides in general.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 3","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.70005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IAMPDB: A Knowledgebase of Manually Curated Insects-Derived Antimicrobial Peptides
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-11 DOI: 10.1002/psc.70006
Rajat Kumar Mondal, Prabhat Tripathi, Rudra Prasad Mondal, Debarup Sen, Ankish Arya, Debayan Karmakar, Oshin Pal, Avijit Dey, Sintu Kumar Samanta

Insects, a majority of animal species, rely on innate immunity and antimicrobial peptides (AMPs), which are a part of their innate immunity, to combat diverse parasites and pathogens. These peptides have applications ranging from agriculture to antimicrobial resistance (AMR). However, there is a lack of a specialized database, prompting the development of the Insect Antimicrobial Peptide Database (IAMPDB) as a pioneering comprehensive Knowledgebase dedicated to insect-derived antimicrobial peptides (IAMPs), serving as a resource for researchers and industry professionals. Curated from UniProt and associated literature(s), IAMPDB currently houses 438 curated entries of IAMPs from various insect species, spanning 10 taxonomical orders of insects. Each entry is meticulously annotated with details on peptide sequence, source organism, activities, physicochemical properties, and more. IAMPDB offers a user-friendly interface with diverse search options, interactive visualizations, and links to external databases; advanced tools, including a peptide sequence alignment toolbox and a peptide feature calculation toolbox, facilitating sequence alignment, physicochemical property calculation, and in-depth analysis. The knowledgebase is accessible online (at URL https://bblserver.org.in/iampdb/).

{"title":"IAMPDB: A Knowledgebase of Manually Curated Insects-Derived Antimicrobial Peptides","authors":"Rajat Kumar Mondal,&nbsp;Prabhat Tripathi,&nbsp;Rudra Prasad Mondal,&nbsp;Debarup Sen,&nbsp;Ankish Arya,&nbsp;Debayan Karmakar,&nbsp;Oshin Pal,&nbsp;Avijit Dey,&nbsp;Sintu Kumar Samanta","doi":"10.1002/psc.70006","DOIUrl":"https://doi.org/10.1002/psc.70006","url":null,"abstract":"<div>\u0000 \u0000 <p>Insects, a majority of animal species, rely on innate immunity and <span>a</span>nti<span>m</span>icrobial <span>p</span>eptides (AMPs), which are a part of their innate immunity, to combat diverse parasites and pathogens. These peptides have applications ranging from agriculture to <span>a</span>nti<span>m</span>icrobial <span>r</span>esistance (AMR). However, there is a lack of a specialized database, prompting the development of the <span>I</span>nsect <span>A</span>nti<span>m</span>icrobial <span>P</span>eptide <span>D</span>ata<span>b</span>ase (IAMPDB) as a pioneering comprehensive Knowledgebase dedicated to <span><span><span>i</span></span></span>nsect-<span>d</span>erived <span>a</span>nti<span>m</span>icrobial <span>p</span>eptides (IAMPs), serving as a resource for researchers and industry professionals. Curated from UniProt and associated literature(s), IAMPDB currently houses 438 curated entries of IAMPs from various insect species, spanning 10 taxonomical orders of insects. Each entry is meticulously annotated with details on peptide sequence, source organism, activities, physicochemical properties, and more. IAMPDB offers a user-friendly interface with diverse search options, interactive visualizations, and links to external databases; advanced tools, including a peptide sequence alignment toolbox and a peptide feature calculation toolbox, facilitating sequence alignment, physicochemical property calculation, and in-depth analysis. The knowledgebase is accessible online (at URL https://bblserver.org.in/iampdb/).</p>\u0000 </div>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 3","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulatory Guidelines for the Analysis of Therapeutic Peptides and Proteins
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-08 DOI: 10.1002/psc.70001
Yomnah Y. Elsayed, Toni Kühl, Diana Imhof

Peptides and proteins have become increasingly important in the treatment of various diseases, including infections, metabolic disorders, and cancers. Over the past decades, the number of approved peptide- and protein-based drugs has grown significantly, now accounting for about 25% of the global pharmaceutical market. This increase has been recorded since the introduction of the first therapeutic peptide, insulin, in 1921. Therapeutic peptides and proteins offer several advantages over small molecule drugs, including high specificity, potency, and safety; however, they also face challenges related to instability in liquid formulations. To address this issue, numerous formulation techniques have been developed to enhance their stability. In either state, physical and chemical characterization of the peptide or protein of interest is crucial for ensuring the identity, purity, and activity of these therapeutic agents. Regulatory bodies such as the FDA, ICH, and EMA have established guidelines for the analysis, stability testing, and quality control of peptides and biologics to ensure the safety and effectiveness of these drugs. In the present review, these guidelines and the consequences thereof are summarized and provided to support the notion of developing tailored bioanalytical workflows for each peptide or protein drug.

{"title":"Regulatory Guidelines for the Analysis of Therapeutic Peptides and Proteins","authors":"Yomnah Y. Elsayed,&nbsp;Toni Kühl,&nbsp;Diana Imhof","doi":"10.1002/psc.70001","DOIUrl":"https://doi.org/10.1002/psc.70001","url":null,"abstract":"<p>Peptides and proteins have become increasingly important in the treatment of various diseases, including infections, metabolic disorders, and cancers. Over the past decades, the number of approved peptide- and protein-based drugs has grown significantly, now accounting for about 25% of the global pharmaceutical market. This increase has been recorded since the introduction of the first therapeutic peptide, insulin, in 1921. Therapeutic peptides and proteins offer several advantages over small molecule drugs, including high specificity, potency, and safety; however, they also face challenges related to instability in liquid formulations. To address this issue, numerous formulation techniques have been developed to enhance their stability. In either state, physical and chemical characterization of the peptide or protein of interest is crucial for ensuring the identity, purity, and activity of these therapeutic agents. Regulatory bodies such as the FDA, ICH, and EMA have established guidelines for the analysis, stability testing, and quality control of peptides and biologics to ensure the safety and effectiveness of these drugs. In the present review, these guidelines and the consequences thereof are summarized and provided to support the notion of developing tailored bioanalytical workflows for each peptide or protein drug.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 3","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.70001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Anabaenopeptins With a Strategic Eye Toward N-Terminal Sequence Diversity
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-06 DOI: 10.1002/psc.70003
Naresh M. Venneti, Boddu S. Ramakrishna, Zoee K. Harris, Sydney C. Kasmer, Dennis P. Anderson, Nicholas J. Peraino, Judy A. Westrick, Jennifer L. Stockdill

A divergent synthesis strategy was developed for producing various anabaenopeptins (AP) for harmful algal bloom monitoring. The synthesis involved on-resin stepwise pentapeptide assembly on a MeDbz linker then N-α-ureido amino acid attachment and cyclization. To manage N-methylated amino acids, modified coupling conditions were employed. Lysine's ε-amino group reacted with the activated MeDbz linker in a self-cleaving head-to-side chain cyclization. Cyclization conditions were optimized by screening different pH levels to control lysine α-amine cyclization and prevent hydrolysis. Global cleavage and purification afforded the pure anabaenopeptins. This approach proved effective as a general platform for anabaenopeptin synthesis, allowing rapid access to anabaenopeptins A, B, F, and oscillamide Y.

{"title":"Synthesis of Anabaenopeptins With a Strategic Eye Toward N-Terminal Sequence Diversity","authors":"Naresh M. Venneti,&nbsp;Boddu S. Ramakrishna,&nbsp;Zoee K. Harris,&nbsp;Sydney C. Kasmer,&nbsp;Dennis P. Anderson,&nbsp;Nicholas J. Peraino,&nbsp;Judy A. Westrick,&nbsp;Jennifer L. Stockdill","doi":"10.1002/psc.70003","DOIUrl":"https://doi.org/10.1002/psc.70003","url":null,"abstract":"<div>\u0000 \u0000 <p>A divergent synthesis strategy was developed for producing various anabaenopeptins (AP) for harmful algal bloom monitoring. The synthesis involved on-resin stepwise pentapeptide assembly on a MeDbz linker then N-α-ureido amino acid attachment and cyclization. To manage <i>N</i>-methylated amino acids, modified coupling conditions were employed. Lysine's ε-amino group reacted with the activated MeDbz linker in a self-cleaving head-to-side chain cyclization. Cyclization conditions were optimized by screening different pH levels to control lysine α-amine cyclization and prevent hydrolysis. Global cleavage and purification afforded the pure anabaenopeptins. This approach proved effective as a general platform for anabaenopeptin synthesis, allowing rapid access to anabaenopeptins A, B, F, and oscillamide Y.</p>\u0000 </div>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 3","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of Phage-Displayed Peptides Targeting Cancer Cell Surface Proteins: A Comprehensive Molecular Docking Study
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-04 DOI: 10.1002/psc.70004
Verónica Quilumba-Dutan, Clara Carreón-Álvarez, Víctor Sanabria-Ayala, Sergio Hidalgo-Figueroa, Swaroop Chakraborty, Eugenia Valsami-Jones, Rubén López-Revilla, José Luis Rodríguez-López

Peptides binding overexpressed breast and cervical cancer cell surface proteins can be isolated by phage display technology, and their affinity to their potential receptors can be assessed by molecular docking. We isolated 44 phage clones displaying dodecapeptides with high affinity to HeLa cervical cancer and MDA-MB-231 (MDA) breast cancer cells by repeated biopanning of an MK13 phage library and explored their affinity to specific proteins by molecular docking. Six peptides appeared repeatedly during biopanning: two with affinity to HeLa (H5/H21), and four with affinity to MDA cells (M3/M7/M15/M17). Peptide pairs M3/H5 and H1/M17 had affinity to both cell lines. A systematic review identified Annexin A2, EGFR, CD44, CD146, and Integrin alpha V as potential protein targets in HeLa cells, and Vimentin, Galectin-1, and Annexins A1 and A5 in MDA cells. Via virtual screening, we selected six peptides with the highest total docking scores: H1 (−916.32), H6 (−979.21), H19 (−1093.24), M6 (−732.21), M16 (−745.5), and M19 (−739.64), and identified that docking scores were strengthened by the protein type, the interacting amino acid side chains, and the polarity of peptides. This approach facilitates the selection of relevant peptides that could be further explored for active targeting in cancer diagnosis and treatment.

{"title":"Assessment of Phage-Displayed Peptides Targeting Cancer Cell Surface Proteins: A Comprehensive Molecular Docking Study","authors":"Verónica Quilumba-Dutan,&nbsp;Clara Carreón-Álvarez,&nbsp;Víctor Sanabria-Ayala,&nbsp;Sergio Hidalgo-Figueroa,&nbsp;Swaroop Chakraborty,&nbsp;Eugenia Valsami-Jones,&nbsp;Rubén López-Revilla,&nbsp;José Luis Rodríguez-López","doi":"10.1002/psc.70004","DOIUrl":"https://doi.org/10.1002/psc.70004","url":null,"abstract":"<div>\u0000 \u0000 <p>Peptides binding overexpressed breast and cervical cancer cell surface proteins can be isolated by phage display technology, and their affinity to their potential receptors can be assessed by molecular docking. We isolated 44 phage clones displaying dodecapeptides with high affinity to HeLa cervical cancer and MDA-MB-231 (MDA) breast cancer cells by repeated biopanning of an MK13 phage library and explored their affinity to specific proteins by molecular docking. Six peptides appeared repeatedly during biopanning: two with affinity to HeLa (H5/H21), and four with affinity to MDA cells (M3/M7/M15/M17). Peptide pairs M3/H5 and H1/M17 had affinity to both cell lines. A systematic review identified Annexin A2, EGFR, CD44, CD146, and Integrin alpha V as potential protein targets in HeLa cells, and Vimentin, Galectin-1, and Annexins A1 and A5 in MDA cells. Via virtual screening, we selected six peptides with the highest total docking scores: H1 (−916.32), H6 (−979.21), H19 (−1093.24), M6 (−732.21), M16 (−745.5), and M19 (−739.64), and identified that docking scores were strengthened by the protein type, the interacting amino acid side chains, and the polarity of peptides. This approach facilitates the selection of relevant peptides that could be further explored for active targeting in cancer diagnosis and treatment.</p>\u0000 </div>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 3","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Assembly of a Conjugate of Lipoic Acid With a Collagen-Stimulating Pentapeptide Showing Cytocompatibility and Wound Healing Properties, and Chemical and Photolytic Disassembly
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-04 DOI: 10.1002/psc.70002
Lucas R. de Mello, Valeria Castelletto, Leide Cavalcanti, Jani Seitsonen, Ian W. Hamley

Lipoic acid is a biocompatible compound with antioxidant activity that is of considerable interest in cosmetic formulations, and the disulfide group in the N-terminal ring confers redox activity. Here, we study the self-assembly and aspects of the bioactivity of a lipopeptide (peptide amphiphile) comprising the KTTKS collagen-stimulating pentapeptide sequence conjugated to an N-terminal lipoic acid chain, lipoyl-KTTKS. Using SAXS, SANS and cryo-TEM, lipoyl-KTTKS is found to form a population of curly fibrils (wormlike micelles) above a critical aggregation concentration. Upon chemical reduction, the fibrils (and β-sheet structure) are disrupted because of the breaking of the disulfide bond, which produces dihydrolipoic acid. Lipoyl-KTTKS also undergoes photo-degradation in the presence of UV radiation. Through cell assays using fibroblasts, we found that lipoyl-KTTKS has excellent cytocompatibility across a wide concentration range, stimulates collagen production, and enhances the rate of cell coverage in a simple in vitro scratch assay of ‘wound healing’. Lipoyl-KTTKS thus has several notable properties that may be useful for the development of cosmetics, cell scaffolds or tissue engineering materials.

{"title":"Self-Assembly of a Conjugate of Lipoic Acid With a Collagen-Stimulating Pentapeptide Showing Cytocompatibility and Wound Healing Properties, and Chemical and Photolytic Disassembly","authors":"Lucas R. de Mello,&nbsp;Valeria Castelletto,&nbsp;Leide Cavalcanti,&nbsp;Jani Seitsonen,&nbsp;Ian W. Hamley","doi":"10.1002/psc.70002","DOIUrl":"https://doi.org/10.1002/psc.70002","url":null,"abstract":"<p>Lipoic acid is a biocompatible compound with antioxidant activity that is of considerable interest in cosmetic formulations, and the disulfide group in the N-terminal ring confers redox activity. Here, we study the self-assembly and aspects of the bioactivity of a lipopeptide (peptide amphiphile) comprising the KTTKS collagen-stimulating pentapeptide sequence conjugated to an N-terminal lipoic acid chain, lipoyl-KTTKS. Using SAXS, SANS and cryo-TEM, lipoyl-KTTKS is found to form a population of curly fibrils (wormlike micelles) above a critical aggregation concentration. Upon chemical reduction, the fibrils (and β-sheet structure) are disrupted because of the breaking of the disulfide bond, which produces dihydrolipoic acid. Lipoyl-KTTKS also undergoes photo-degradation in the presence of UV radiation. Through cell assays using fibroblasts, we found that lipoyl-KTTKS has excellent cytocompatibility across a wide concentration range, stimulates collagen production, and enhances the rate of cell coverage in a simple in vitro scratch assay of ‘wound healing’. Lipoyl-KTTKS thus has several notable properties that may be useful for the development of cosmetics, cell scaffolds or tissue engineering materials.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 3","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.70002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Peptide Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1