{"title":"A depth analysis of recent innovations in non-invasive techniques using artificial intelligence approach for cancer prediction.","authors":"Hari Mohan Rai, Joon Yoo, Abdul Razaque","doi":"10.1007/s11517-024-03158-0","DOIUrl":null,"url":null,"abstract":"<p><p>The fight against cancer, a relentless global health crisis, emphasizes the urgency for efficient and automated early detection methods. To address this critical need, this review assesses recent advances in non-invasive cancer prediction techniques, comparing conventional machine learning (CML) and deep neural networks (DNNs). Focusing on these seven major cancers, we analyze 310 publications spanning the years 2018 to 2024, focusing on detection accuracy as the key metric to identify the most effective predictive models, highlighting critical gaps in current methodologies, and suggesting directions for future research. We further delved into factors like datasets, features, and modalities to gain a comprehensive understanding of each approach's performance. Separate review tables for each cancer type and approach facilitated comparisons between top performers (accuracy exceeding 99%) and low performers (65.83 to 85.8%). Our exploration of public databases and commonly used classifiers revealed that optimal combinations of features, datasets, and models can achieve up to 100% accuracy for both CML and DNN. However, significant variations in accuracy (up to 35%) were observed, particularly when optimization was lacking. Notably, colorectal cancer exhibited the lowest accuracy (DNN 69%, CML 65.83%). A five-point comparative analysis (best/worst models, performance gap, average accuracy, and research trends) revealed that while DNN research is gaining momentum, CML approaches remain competitive, even outperforming DNN in some cases. This study presents an in-depth comparative analysis of CML and DNN techniques for cancer detection. This knowledge can inform future research directions and contribute to the development of increasingly accurate and reliable cancer detection tools.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"3555-3580"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11517-024-03158-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The fight against cancer, a relentless global health crisis, emphasizes the urgency for efficient and automated early detection methods. To address this critical need, this review assesses recent advances in non-invasive cancer prediction techniques, comparing conventional machine learning (CML) and deep neural networks (DNNs). Focusing on these seven major cancers, we analyze 310 publications spanning the years 2018 to 2024, focusing on detection accuracy as the key metric to identify the most effective predictive models, highlighting critical gaps in current methodologies, and suggesting directions for future research. We further delved into factors like datasets, features, and modalities to gain a comprehensive understanding of each approach's performance. Separate review tables for each cancer type and approach facilitated comparisons between top performers (accuracy exceeding 99%) and low performers (65.83 to 85.8%). Our exploration of public databases and commonly used classifiers revealed that optimal combinations of features, datasets, and models can achieve up to 100% accuracy for both CML and DNN. However, significant variations in accuracy (up to 35%) were observed, particularly when optimization was lacking. Notably, colorectal cancer exhibited the lowest accuracy (DNN 69%, CML 65.83%). A five-point comparative analysis (best/worst models, performance gap, average accuracy, and research trends) revealed that while DNN research is gaining momentum, CML approaches remain competitive, even outperforming DNN in some cases. This study presents an in-depth comparative analysis of CML and DNN techniques for cancer detection. This knowledge can inform future research directions and contribute to the development of increasingly accurate and reliable cancer detection tools.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).