{"title":"RGD-modified ZIF-8 nanoparticles as a drug carrier for MR imaging and targeted drug delivery in myocardial infarction.","authors":"Yingxu Li, Maisituremu Tuerhan, Bing Li, Shuangling Chen, Yuji Wang, Yuanyuan Zheng","doi":"10.1080/17435889.2024.2365623","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> A multifunctional nanoplatform has been developed to enhance the targeting capability and biosafety of drug/siRNA for better diagnosis and treatment of myocardial infarction (MI).<b>Materials & methods:</b> The nanoplatform's chemical properties, biodistribution, cardiac magnetic resonance imaging (MRI) capabilities, therapeutic effects and biocompatibility were investigated.<b>Results:</b> The nanoplatform exhibited MI-targeting properties and pH-sensitivity, allowing for effective cardiac MRI and delivery of drugs to the infarcted myocardium. The GCD/Qt@ZIF-RGD demonstrated potential as a reliable MRI probe for MI diagnosis. Moreover, the GCD/si-SHP1/Qt@ZIF-RGD effectively suppressed SHP-1 expression, increased pro-angiogenesis gene expression and reduced cell apoptosis in HUVECs exposed to hypoxia/reoxygenation.<b>Conclusion:</b> Our newly developed multifunctional drug delivery system shows promise as a nanoplatform for both the diagnosis and treatment of MI.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389745/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17435889.2024.2365623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: A multifunctional nanoplatform has been developed to enhance the targeting capability and biosafety of drug/siRNA for better diagnosis and treatment of myocardial infarction (MI).Materials & methods: The nanoplatform's chemical properties, biodistribution, cardiac magnetic resonance imaging (MRI) capabilities, therapeutic effects and biocompatibility were investigated.Results: The nanoplatform exhibited MI-targeting properties and pH-sensitivity, allowing for effective cardiac MRI and delivery of drugs to the infarcted myocardium. The GCD/Qt@ZIF-RGD demonstrated potential as a reliable MRI probe for MI diagnosis. Moreover, the GCD/si-SHP1/Qt@ZIF-RGD effectively suppressed SHP-1 expression, increased pro-angiogenesis gene expression and reduced cell apoptosis in HUVECs exposed to hypoxia/reoxygenation.Conclusion: Our newly developed multifunctional drug delivery system shows promise as a nanoplatform for both the diagnosis and treatment of MI.