Evaluation of correlation of physicochemical parameters and major ions present in groundwater of Raipur using discretization

Q4 Engineering Measurement Sensors Pub Date : 2024-07-10 DOI:10.1016/j.measen.2024.101278
Mridu Sahu , Anushree Shrivastava , D.C. Jhariya , Shivangi Diwan , Jalina Subhadarsini
{"title":"Evaluation of correlation of physicochemical parameters and major ions present in groundwater of Raipur using discretization","authors":"Mridu Sahu ,&nbsp;Anushree Shrivastava ,&nbsp;D.C. Jhariya ,&nbsp;Shivangi Diwan ,&nbsp;Jalina Subhadarsini","doi":"10.1016/j.measen.2024.101278","DOIUrl":null,"url":null,"abstract":"<div><p>Groundwater, vital for human consumption and agriculture, ecosystem support, and industrial activities, requires sustainable management using proper quality assessment techniques. This study examines the relationship between physicochemical parameters and major ions in groundwater samples collected from 44 regions in Raipur, using sensor-based data acquisition alongside traditional methods. Employing K-means clustering for data discretization, correlations between parameters are highlighted. Results show positive associations among EC, TDS, TH, and TA. ArcGIS interpolation maps visualize spatial distribution. Addressing class imbalance, an upsampling technique is utilized. Machine learning algorithms, including Logistic Regression and Random Forest, classify water quality with accuracies of 98.8 % and 98.3 %, respectively. This research, blending traditional and sensor-based methods, emphasizes informed water management<strong>.</strong></p></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"34 ","pages":"Article 101278"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266591742400254X/pdfft?md5=bebf3fe3c74e04f17b1ad4fcf00fdd06&pid=1-s2.0-S266591742400254X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266591742400254X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Groundwater, vital for human consumption and agriculture, ecosystem support, and industrial activities, requires sustainable management using proper quality assessment techniques. This study examines the relationship between physicochemical parameters and major ions in groundwater samples collected from 44 regions in Raipur, using sensor-based data acquisition alongside traditional methods. Employing K-means clustering for data discretization, correlations between parameters are highlighted. Results show positive associations among EC, TDS, TH, and TA. ArcGIS interpolation maps visualize spatial distribution. Addressing class imbalance, an upsampling technique is utilized. Machine learning algorithms, including Logistic Regression and Random Forest, classify water quality with accuracies of 98.8 % and 98.3 %, respectively. This research, blending traditional and sensor-based methods, emphasizes informed water management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用离散化方法评估赖布尔地下水中物理化学参数和主要离子的相关性
地下水对人类消费、农业、生态系统支持和工业活动至关重要,需要利用适当的质量评估技术进行可持续管理。本研究采用基于传感器的数据采集和传统方法,研究了从雷普尔 44 个地区采集的地下水样本中物理化学参数和主要离子之间的关系。采用 K-means 聚类法对数据进行离散化处理,突出了参数之间的相关性。结果显示 EC、TDS、TH 和 TA 之间存在正相关。ArcGIS 插值地图将空间分布可视化。为解决类不平衡问题,采用了上采样技术。包括逻辑回归和随机森林在内的机器学习算法对水质进行了分类,准确率分别为 98.8 % 和 98.3 %。这项研究融合了传统方法和基于传感器的方法,强调知情的水资源管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement Sensors
Measurement Sensors Engineering-Industrial and Manufacturing Engineering
CiteScore
3.10
自引率
0.00%
发文量
184
审稿时长
56 days
期刊最新文献
Vehicle maneuver recognition and correction algorithm for road quality measurement system optimization A simple and inexpensive design of radioactive source for accurate level and height gauging in petrochemical industries Pneumonia detection from X-ray images using federated learning–An unsupervised learning approach Number plate recognition smart parking management system using IoT Collaboration of clustering and classification techniques for better prediction of severity of heart stroke using deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1