IoT-based trusted wireless communication framework by machine learning approach

Q4 Engineering Measurement Sensors Pub Date : 2024-07-14 DOI:10.1016/j.measen.2024.101271
S. Chakaravarthi , S. Saravanan , M. Jagadeesh , S. Nandhini
{"title":"IoT-based trusted wireless communication framework by machine learning approach","authors":"S. Chakaravarthi ,&nbsp;S. Saravanan ,&nbsp;M. Jagadeesh ,&nbsp;S. Nandhini","doi":"10.1016/j.measen.2024.101271","DOIUrl":null,"url":null,"abstract":"<div><p>The traditional Radio-Frequency Systems (RFS) authentication methods, designed to ensure secure data transmission on the web, may not always effectively prevent adversaries from gaining access to concealed IDs or asymmetric cryptography through infiltrative, side-channel, training, and computer attacks. In contrast, Unaccounted Information (UAI) has the potential to exploit irregularities in production systems to automatically identify microchips, offering a highly robust and cost-effective security solution. This approach introduces RFS-UAI, a deep neural network-based system that efficiently manages wireless node identification by leveraging synthetic RFS characteristics of remote controls (Tx) learned through supervised methods in Wireless Sensor Networks (WSN). Unlike traditional methods that require the development of specialized transistors for UAI or semantic segmentation, this approach utilizes the existing asymmetrical RFS communication networks. Similar to the way the human brain processes information, Rx handles the entire device identification process at the gateway. According to test results, which include assessing process capability at a specified 65 nm threshold voltage and characteristics such as Local Oscillator (LO) misalignment and I-Q disparity using a probabilistic model with 52 hidden units, the system can distinguish up to 4800 transmitters with a remarkable 99.9 % accuracy under various channel conditions, all without the need for regular preambles. This recommended method can serve as a standalone security measure or be integrated into a biometric identification system.</p></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"34 ","pages":"Article 101271"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665917424002472/pdfft?md5=1d4a6936b309c04375288d529a833869&pid=1-s2.0-S2665917424002472-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665917424002472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional Radio-Frequency Systems (RFS) authentication methods, designed to ensure secure data transmission on the web, may not always effectively prevent adversaries from gaining access to concealed IDs or asymmetric cryptography through infiltrative, side-channel, training, and computer attacks. In contrast, Unaccounted Information (UAI) has the potential to exploit irregularities in production systems to automatically identify microchips, offering a highly robust and cost-effective security solution. This approach introduces RFS-UAI, a deep neural network-based system that efficiently manages wireless node identification by leveraging synthetic RFS characteristics of remote controls (Tx) learned through supervised methods in Wireless Sensor Networks (WSN). Unlike traditional methods that require the development of specialized transistors for UAI or semantic segmentation, this approach utilizes the existing asymmetrical RFS communication networks. Similar to the way the human brain processes information, Rx handles the entire device identification process at the gateway. According to test results, which include assessing process capability at a specified 65 nm threshold voltage and characteristics such as Local Oscillator (LO) misalignment and I-Q disparity using a probabilistic model with 52 hidden units, the system can distinguish up to 4800 transmitters with a remarkable 99.9 % accuracy under various channel conditions, all without the need for regular preambles. This recommended method can serve as a standalone security measure or be integrated into a biometric identification system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于物联网的机器学习可信无线通信框架
为确保网络数据传输安全而设计的传统射频系统(RFS)验证方法,可能无法始终有效地防止对手通过渗透、侧信道、训练和计算机攻击等手段获取隐藏的 ID 或非对称密码。相比之下,"不明信息"(UAI)则有可能利用生产系统中的不正常现象来自动识别微芯片,从而提供一种高度稳健且具有成本效益的安全解决方案。这种方法引入了 RFS-UAI,这是一种基于深度神经网络的系统,它利用无线传感器网络(WSN)中通过监督方法学习到的遥控器(Tx)的合成 RFS 特征,有效地管理无线节点识别。与需要为 UAI 或语义分割开发专用晶体管的传统方法不同,这种方法利用了现有的非对称 RFS 通信网络。与人脑处理信息的方式类似,Rx 在网关处理整个设备识别过程。根据测试结果(包括在指定的 65 纳米阈值电压下评估工艺能力),以及使用具有 52 个隐藏单元的概率模型评估本地振荡器 (LO) 失调和 I-Q 差异等特性,该系统可在各种信道条件下以 99.9% 的出色准确率区分多达 4800 个发射器,而且无需常规的前置信号。这种推荐的方法既可作为独立的安全措施,也可集成到生物识别系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement Sensors
Measurement Sensors Engineering-Industrial and Manufacturing Engineering
CiteScore
3.10
自引率
0.00%
发文量
184
审稿时长
56 days
期刊最新文献
Vehicle maneuver recognition and correction algorithm for road quality measurement system optimization A simple and inexpensive design of radioactive source for accurate level and height gauging in petrochemical industries Pneumonia detection from X-ray images using federated learning–An unsupervised learning approach Number plate recognition smart parking management system using IoT Collaboration of clustering and classification techniques for better prediction of severity of heart stroke using deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1