Theoretical investigation of unsteady MHD flow of Casson hybrid nanofluid in porous medium: Applications of thermal radiations and nanoparticle

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Journal of Radiation Research and Applied Sciences Pub Date : 2024-07-16 DOI:10.1016/j.jrras.2024.101029
{"title":"Theoretical investigation of unsteady MHD flow of Casson hybrid nanofluid in porous medium: Applications of thermal radiations and nanoparticle","authors":"","doi":"10.1016/j.jrras.2024.101029","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, we investigated the unsteady magnetohydrodynamic (MHD) convective flow of Casson hybrid nanofluids over an oscillating plate, considering the effects of a porous medium and thermal radiation. These hybrid nanofluids, composed of multiple nanoparticles dispersed in a base fluid, offer advantages over single nanoparticle suspensions, including improved heat transfer properties and enhanced thermal conductivity. The study focused on Ag–Au/blood hybrid nanofluids across an oscillating plate. The drug-carrying fluid can navigate complex vascular structures effectively by using hybrid nanofluids e.g., silver and gold nanoparticles in blood. Also, by employing external magnetic fields to guide and concentrate the drug-carrying nanofluid to the target area. The Casson fluid, known for its elasticity behavior, is a non-Newtonian fluid with diverse applications in industrial and engineering sectors. Mathematically, we incorporated the Casson fluid model to express blood flow, accounting for convection, thermal radiation, and porous medium effects. By transforming the governing partial differential equations into dimensionless form using dimensionless parameters, we employed the Laplace transform method to find the exact solutions for velocity and temperature. Graphical analysis revealed that fluid velocity decreases with increasing magnetic field parameter but increases with Darcy parameter, Casson fluid parameter, Grashof number, nanoparticle concentration, and unsteady parameter. Additionally, the hybrid nanofluid temperature rises proportionally with the radiation parameter, nanoparticle volume fraction, and unsteady parameter.</p></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1687850724002139/pdfft?md5=58502e5aa0de77e8a0d3e8d8c11d5a8d&pid=1-s2.0-S1687850724002139-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850724002139","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, we investigated the unsteady magnetohydrodynamic (MHD) convective flow of Casson hybrid nanofluids over an oscillating plate, considering the effects of a porous medium and thermal radiation. These hybrid nanofluids, composed of multiple nanoparticles dispersed in a base fluid, offer advantages over single nanoparticle suspensions, including improved heat transfer properties and enhanced thermal conductivity. The study focused on Ag–Au/blood hybrid nanofluids across an oscillating plate. The drug-carrying fluid can navigate complex vascular structures effectively by using hybrid nanofluids e.g., silver and gold nanoparticles in blood. Also, by employing external magnetic fields to guide and concentrate the drug-carrying nanofluid to the target area. The Casson fluid, known for its elasticity behavior, is a non-Newtonian fluid with diverse applications in industrial and engineering sectors. Mathematically, we incorporated the Casson fluid model to express blood flow, accounting for convection, thermal radiation, and porous medium effects. By transforming the governing partial differential equations into dimensionless form using dimensionless parameters, we employed the Laplace transform method to find the exact solutions for velocity and temperature. Graphical analysis revealed that fluid velocity decreases with increasing magnetic field parameter but increases with Darcy parameter, Casson fluid parameter, Grashof number, nanoparticle concentration, and unsteady parameter. Additionally, the hybrid nanofluid temperature rises proportionally with the radiation parameter, nanoparticle volume fraction, and unsteady parameter.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卡森混合纳米流体在多孔介质中的非稳态 MHD 流动的理论研究:热辐射和纳米粒子的应用
在这项研究中,我们考虑到多孔介质和热辐射的影响,研究了卡松混合纳米流体在摆动板上的非稳态磁流体动力学(MHD)对流。这些混合纳米流体由分散在基础流体中的多个纳米粒子组成,与单个纳米粒子悬浮液相比具有更多优势,包括改进的传热性能和更强的导热性。这项研究的重点是银-金/血液混合纳米流体穿过摆动板。通过使用混合纳米流体(如血液中的银纳米粒子和金纳米粒子),载药流体可有效导航复杂的血管结构。此外,还可利用外部磁场将载药纳米流体引导并集中到目标区域。卡松流体因其弹性行为而闻名,是一种非牛顿流体,在工业和工程领域有着广泛的应用。在数学上,我们采用卡松流体模型来表达血液流动,并考虑了对流、热辐射和多孔介质效应。通过使用无量纲参数将控制偏微分方程转换为无量纲形式,我们采用拉普拉斯变换法找到了速度和温度的精确解。图形分析表明,流体速度随磁场参数的增加而减小,但随达西参数、卡森流体参数、格拉肖夫数、纳米粒子浓度和不稳定参数的增加而增大。此外,混合纳米流体的温度随辐射参数、纳米粒子体积分数和不稳定参数的增加而成正比上升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
期刊最新文献
Optical and gamma-ray shielding properties of lead phosphate glasses by controlled copper oxide doping Statistical inference on the exponentiated moment exponential distribution and its discretization Cross-region feature fusion of global and local area for subtype classification prediction in cervical tumour Impact of nonlinear thermal radiation for magnetized dissipative flow of ternary hybrid nanomaterial (Al2 O3- SiO2- Fe3 O4- H2 O) Exploring the dynamic behavior of the two-phase model in radiative non-Newtonian nanofluid flow with Hall current and ion slip effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1