Precision diagnostics in cardiac tumours: Integrating echocardiography and pathology with advanced machine learning on limited data

Seyed-Ali Sadegh-Zadeh , Naser Khezerlouy-aghdam , Hanieh Sakha , Mehrnoush Toufan , Mahsa Behravan , Amir Vahedi , Mehran Rahimi , Haniyeh Hosseini , Sanaz Khanjani , Bita Bayat , Syed Ahsan Ali , Reza Hajizadeh , Ali Eshraghi , Saeed Shiry Ghidary , Mozafar Saadat
{"title":"Precision diagnostics in cardiac tumours: Integrating echocardiography and pathology with advanced machine learning on limited data","authors":"Seyed-Ali Sadegh-Zadeh ,&nbsp;Naser Khezerlouy-aghdam ,&nbsp;Hanieh Sakha ,&nbsp;Mehrnoush Toufan ,&nbsp;Mahsa Behravan ,&nbsp;Amir Vahedi ,&nbsp;Mehran Rahimi ,&nbsp;Haniyeh Hosseini ,&nbsp;Sanaz Khanjani ,&nbsp;Bita Bayat ,&nbsp;Syed Ahsan Ali ,&nbsp;Reza Hajizadeh ,&nbsp;Ali Eshraghi ,&nbsp;Saeed Shiry Ghidary ,&nbsp;Mozafar Saadat","doi":"10.1016/j.imu.2024.101544","DOIUrl":null,"url":null,"abstract":"<div><p>This study pioneers the integration of echocardiography and pathology data with advanced machine learning (ML) techniques to significantly enhance the diagnostic accuracy of cardiac tumours, a critical yet challenging aspect of cardiology. Despite advancements in diagnostic methods, cardiac tumours' nuanced complexity and rarity necessitate more precise, non-invasive, and efficient diagnostic solutions. Our research aims to bridge this gap by developing and validating ML models—Support Vector Machines (SVM), Random Forest (RF), and Gradient Boosting Machines (GBM)—optimized for limited datasets prevalent in specialized medical fields. Utilizing a dataset comprising clinical features from 399 patients at the Heart Hospital, our study meticulously evaluated the performance of these models against traditional diagnostic metrics. The RF model emerged superior, achieving a groundbreaking accuracy of 96.25 % and a perfect ROC AUC score of 0.99, significantly outperforming existing diagnostic approaches. Key predictors identified include age, <em>echo malignancy</em>, and <em>echo position</em>, underscoring the value of integrating diverse data types. Clinical validation conducted at the Heart Hospital further confirmed the models' applicability and reliability, with the RF model demonstrating a diagnostic accuracy of 94 % in a real-world setting. These findings advocate for the potential of ML in revolutionizing cardiac tumour diagnostics, offering pathways to more accurate, non-invasive, and patient-centric diagnostic processes. This research not only highlights the capabilities of ML to enhance diagnostic precision in the realm of cardiac tumours but also sets a foundation for future explorations into its broader applicability across various domains of medical diagnostics, emphasizing the need for expanded datasets and external validation.</p></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"49 ","pages":"Article 101544"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235291482400100X/pdfft?md5=554f36977387f1b7fb815683f0ab49fb&pid=1-s2.0-S235291482400100X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235291482400100X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

This study pioneers the integration of echocardiography and pathology data with advanced machine learning (ML) techniques to significantly enhance the diagnostic accuracy of cardiac tumours, a critical yet challenging aspect of cardiology. Despite advancements in diagnostic methods, cardiac tumours' nuanced complexity and rarity necessitate more precise, non-invasive, and efficient diagnostic solutions. Our research aims to bridge this gap by developing and validating ML models—Support Vector Machines (SVM), Random Forest (RF), and Gradient Boosting Machines (GBM)—optimized for limited datasets prevalent in specialized medical fields. Utilizing a dataset comprising clinical features from 399 patients at the Heart Hospital, our study meticulously evaluated the performance of these models against traditional diagnostic metrics. The RF model emerged superior, achieving a groundbreaking accuracy of 96.25 % and a perfect ROC AUC score of 0.99, significantly outperforming existing diagnostic approaches. Key predictors identified include age, echo malignancy, and echo position, underscoring the value of integrating diverse data types. Clinical validation conducted at the Heart Hospital further confirmed the models' applicability and reliability, with the RF model demonstrating a diagnostic accuracy of 94 % in a real-world setting. These findings advocate for the potential of ML in revolutionizing cardiac tumour diagnostics, offering pathways to more accurate, non-invasive, and patient-centric diagnostic processes. This research not only highlights the capabilities of ML to enhance diagnostic precision in the realm of cardiac tumours but also sets a foundation for future explorations into its broader applicability across various domains of medical diagnostics, emphasizing the need for expanded datasets and external validation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心脏肿瘤的精准诊断:将超声心动图和病理学与有限数据上的高级机器学习相结合
这项研究开创性地将超声心动图和病理学数据与先进的机器学习(ML)技术相结合,以显著提高心脏肿瘤诊断的准确性,这是心脏病学的一个重要而又具有挑战性的方面。尽管诊断方法不断进步,但由于心脏肿瘤的细微复杂性和罕见性,需要更精确、无创和高效的诊断解决方案。我们的研究旨在通过开发和验证支持向量机(SVM)、随机森林(RF)和梯度提升机(GBM)等 ML 模型来弥合这一差距,这些模型针对专业医疗领域普遍存在的有限数据集进行了优化。我们的研究利用了一个数据集,其中包括心脏医院 399 名患者的临床特征,对照传统诊断指标对这些模型的性能进行了细致的评估。射频模型表现出色,准确率达到了突破性的 96.25%,ROC AUC 得分为 0.99,明显优于现有的诊断方法。确定的主要预测因素包括年龄、回波恶性程度和回波位置,这突出了整合不同数据类型的价值。在心脏病医院进行的临床验证进一步证实了模型的适用性和可靠性,射频模型在实际环境中的诊断准确率高达 94%。这些研究结果证明了人工智能在革新心脏肿瘤诊断方面的潜力,为更准确、无创和以患者为中心的诊断过程提供了途径。这项研究不仅凸显了人工智能在提高心脏肿瘤诊断精确度方面的能力,还为今后探索人工智能在医疗诊断各个领域更广泛的适用性奠定了基础,同时强调了扩大数据集和外部验证的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
期刊最新文献
Usability and accessibility in mHealth stroke apps: An empirical assessment Spatiotemporal chest wall movement analysis using depth sensor imaging for detecting respiratory asynchrony Regression and classification of Windkessel parameters from non-invasive cardiovascular quantities using a fully connected neural network Patient2Trial: From patient to participant in clinical trials using large language models Structural modification of Naproxen; physicochemical, spectral, medicinal, and pharmacological evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1