Spatial dynamics of COVID-19 in São Paulo: A cellular automata and GIS approach

IF 2.1 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Spatial and Spatio-Temporal Epidemiology Pub Date : 2024-07-08 DOI:10.1016/j.sste.2024.100674
W.L. Barreto, F.H. Pereira, Y. Perez, P.H.T. Schimit
{"title":"Spatial dynamics of COVID-19 in São Paulo: A cellular automata and GIS approach","authors":"W.L. Barreto,&nbsp;F.H. Pereira,&nbsp;Y. Perez,&nbsp;P.H.T. Schimit","doi":"10.1016/j.sste.2024.100674","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the spread of COVID-19 in São Paulo, Brazil, using a combination of cellular automata and geographic information systems to model the epidemic’s spatial dynamics. By integrating epidemiological models with georeferenced data and social indicators, we analyse how the virus propagates in a complex urban setting, characterized by significant social and economic disparities. The research highlights the role of various factors, including mobility patterns, neighbourhood configurations, and local inequalities, in the spatial spreading of COVID-19 throughout São Paulo. We simulate disease transmission across the city’s 96 districts, offering insights into the impact of network topology and district-specific variables on the spread of infections. The study seeks to fine-tune the model to extract epidemiological parameters for further use in a statistical analysis of social variables. Our findings underline the critical importance of spatial analysis in public health strategies and emphasize the necessity for targeted interventions in vulnerable communities. Additionally, the study explores the potential of mathematical modelling in understanding and mitigating the effects of pandemics in urban environments.</p></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"50 ","pages":"Article 100674"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584524000418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the spread of COVID-19 in São Paulo, Brazil, using a combination of cellular automata and geographic information systems to model the epidemic’s spatial dynamics. By integrating epidemiological models with georeferenced data and social indicators, we analyse how the virus propagates in a complex urban setting, characterized by significant social and economic disparities. The research highlights the role of various factors, including mobility patterns, neighbourhood configurations, and local inequalities, in the spatial spreading of COVID-19 throughout São Paulo. We simulate disease transmission across the city’s 96 districts, offering insights into the impact of network topology and district-specific variables on the spread of infections. The study seeks to fine-tune the model to extract epidemiological parameters for further use in a statistical analysis of social variables. Our findings underline the critical importance of spatial analysis in public health strategies and emphasize the necessity for targeted interventions in vulnerable communities. Additionally, the study explores the potential of mathematical modelling in understanding and mitigating the effects of pandemics in urban environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
圣保罗 COVID-19 的空间动态:细胞自动机和地理信息系统方法
本研究考察了 COVID-19 在巴西圣保罗的传播情况,结合使用了细胞自动机和地理信息系统来模拟疫情的空间动态。通过将流行病学模型与地理坐标数据和社会指标相结合,我们分析了病毒如何在社会和经济差异显著的复杂城市环境中传播。研究强调了各种因素在 COVID-19 在整个圣保罗的空间传播中的作用,包括流动模式、街区配置和地方不平等。我们模拟了该市 96 个区的疾病传播情况,深入探讨了网络拓扑结构和特定地区变量对感染传播的影响。这项研究旨在对模型进行微调,以提取流行病学参数,进一步用于社会变量的统计分析。我们的研究结果凸显了空间分析在公共卫生战略中的极端重要性,并强调了在易感社区采取有针对性干预措施的必要性。此外,这项研究还探讨了数学模型在理解和减轻城市环境中流行病影响方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Automated Image Reduction for Explaining Black-box Classifiers
Mingyue Jiang, Chengjian Tang, Xiao-Yi Zhang, Yangyang Zhao, Zuohua Ding
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
期刊最新文献
Editorial Board Geospatial distribution of the adoption of dipeptidyl-peptidase-4 inhibitors for type 2 diabetes among Medicare beneficiaries Spatial modeling and risk assessment of chagas disease vector distribution in Espírito Santo, Brazil: A comprehensive approach for targeted control A fast approach for analyzing spatio-temporal patterns in ischemic heart disease mortality across US counties (1999–2021) Estimating subnational under-five mortality rates using a spatio-temporal Age-Period-Cohort model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1