PRISMA vs. Landsat 9 in lithological mapping − a K-fold Cross-Validation implementation with Random Forest

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-07-15 DOI:10.1016/j.ejrs.2024.07.003
Ali Shebl , Dávid Abriha , Maher Dawoud , Mosaad Ali Hussein Ali , Árpád Csámer
{"title":"PRISMA vs. Landsat 9 in lithological mapping − a K-fold Cross-Validation implementation with Random Forest","authors":"Ali Shebl ,&nbsp;Dávid Abriha ,&nbsp;Maher Dawoud ,&nbsp;Mosaad Ali Hussein Ali ,&nbsp;Árpád Csámer","doi":"10.1016/j.ejrs.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>The selection of an optimal dataset is crucial for successful remote sensing analysis. The PRISMA hyperspectral sensor (with 240 spectral bands) and Landsat OLI-2 (boasting high dynamic resolution) offer robust data for various remote sensing applications, anticipating their increased demand in the coming years. However, despite their potential, we have not identified a rigorous evaluation of both datasets in geological applications utilizing Machine Learning Algorithms. Consequently, we conduct a comprehensive analysis using Random Forest, a widely-recommended machine learning algorithm, and employ K-fold cross-validation (with <em>K</em> = 2, 5, 10) with grid-search hyperparameter tuning for enhanced performance. Toward this aim, diverse image-processing approaches, including Principal Component Analysis (PCA), Minimum Noise Fraction (MNF), and Independent Component Analysis (ICA), were applied to enhance feature selection and extraction. Subsequently, to ensure better performance of the RF algorithm, this study utilized well-distributed points instead of polygons to represent each target, thereby mitigating the effects of spatial autocorrelation. Our results reveal dataset-hyperparameter dependencies, with PRISMA mainly influenced by <em>max_depth</em> and Landsat 9 by <em>max_features</em>. Employing grid-search optimally balances dataset characteristics and data splitting (folds), generating accurate lithological maps across all K values. Notably, a significant hyperparameter shift at <em>K</em> = 10 produces the best lithological maps. Fieldwork and petrographic investigations validate the lithological maps, indicating PRISMA’s slight superiority over Landsat OLI-2. Despite this, given the dataset nature and band count difference, we still advocate Landsat 9 as a potent multispectral input for future applications due to its superior radiometric resolution.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110982324000553/pdfft?md5=cd78548dacf563f3d654cb587e5c2940&pid=1-s2.0-S1110982324000553-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982324000553","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The selection of an optimal dataset is crucial for successful remote sensing analysis. The PRISMA hyperspectral sensor (with 240 spectral bands) and Landsat OLI-2 (boasting high dynamic resolution) offer robust data for various remote sensing applications, anticipating their increased demand in the coming years. However, despite their potential, we have not identified a rigorous evaluation of both datasets in geological applications utilizing Machine Learning Algorithms. Consequently, we conduct a comprehensive analysis using Random Forest, a widely-recommended machine learning algorithm, and employ K-fold cross-validation (with K = 2, 5, 10) with grid-search hyperparameter tuning for enhanced performance. Toward this aim, diverse image-processing approaches, including Principal Component Analysis (PCA), Minimum Noise Fraction (MNF), and Independent Component Analysis (ICA), were applied to enhance feature selection and extraction. Subsequently, to ensure better performance of the RF algorithm, this study utilized well-distributed points instead of polygons to represent each target, thereby mitigating the effects of spatial autocorrelation. Our results reveal dataset-hyperparameter dependencies, with PRISMA mainly influenced by max_depth and Landsat 9 by max_features. Employing grid-search optimally balances dataset characteristics and data splitting (folds), generating accurate lithological maps across all K values. Notably, a significant hyperparameter shift at K = 10 produces the best lithological maps. Fieldwork and petrographic investigations validate the lithological maps, indicating PRISMA’s slight superiority over Landsat OLI-2. Despite this, given the dataset nature and band count difference, we still advocate Landsat 9 as a potent multispectral input for future applications due to its superior radiometric resolution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PRISMA 与 Landsat 9 在岩性制图中的对比 - 利用随机森林进行 K 倍交叉验证
选择最佳数据集是成功进行遥感分析的关键。PRISMA 高光谱传感器(具有 240 个光谱波段)和 Landsat OLI-2(具有高动态分辨率)为各种遥感应用提供了强大的数据,预计未来几年对它们的需求将不断增加。然而,尽管这两个数据集潜力巨大,但我们尚未发现在地质应用中利用机器学习算法对其进行严格评估的案例。因此,我们使用随机森林(一种广受推崇的机器学习算法)进行了全面分析,并采用 K 倍交叉验证(K = 2、5、10)和网格搜索超参数调整来提高性能。为此,我们采用了多种图像处理方法,包括主成分分析法(PCA)、最小噪声分数法(MNF)和独立成分分析法(ICA),以加强特征选择和提取。随后,为了确保射频算法具有更好的性能,本研究利用分布良好的点而不是多边形来表示每个目标,从而减轻了空间自相关的影响。我们的研究结果揭示了数据集与参数之间的依赖关系,PRISMA 主要受最大深度的影响,而 Landsat 9 则受最大特征的影响。采用网格搜索法可以在数据集特征和数据分割(褶皱)之间取得最佳平衡,从而生成所有 K 值的精确岩性图。值得注意的是,在 K = 10 时,超参数的显著偏移产生了最佳的岩性图。实地考察和岩石学调查验证了岩性图,表明 PRISMA 比 Landsat OLI-2 略胜一筹。尽管如此,考虑到数据集的性质和波段数的差异,我们仍然主张将大地遥感卫星 9 号作为未来应用的有效多光谱输入,因为它具有更高的辐射分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1