Identifying water-lubricated faults in the vicinity of a dam

IF 3.7 3区 地球科学 Q2 ENVIRONMENTAL SCIENCES Egyptian Journal of Remote Sensing and Space Sciences Pub Date : 2025-01-24 DOI:10.1016/j.ejrs.2025.01.003
Carolle Fomekong Lambou , Carolle Fomekong Lambou , Jorelle Larissa Meli’i , Harlin Ekoro Nkoungou , Kasi Njeudjang , Andre Michel Pouth Nkoma , Philippe Njandjock Nouck
{"title":"Identifying water-lubricated faults in the vicinity of a dam","authors":"Carolle Fomekong Lambou ,&nbsp;Carolle Fomekong Lambou ,&nbsp;Jorelle Larissa Meli’i ,&nbsp;Harlin Ekoro Nkoungou ,&nbsp;Kasi Njeudjang ,&nbsp;Andre Michel Pouth Nkoma ,&nbsp;Philippe Njandjock Nouck","doi":"10.1016/j.ejrs.2025.01.003","DOIUrl":null,"url":null,"abstract":"<div><div>The development of remote sensing, with its many applications, combined with field data collected by geologists, geophysicists and geotechnical scientists, is now contributing to sustainable development in the mining, infrastructure and civil protection sectors. This study integrates remote sensing and the audiomagnetotelluric (AMT) method to identify faults lubricated or potentially lubricated by water in the vicinity of a dam. The data set includes SRTM_DEM images and AMT data from seven stations collected in the study area. The results from remote sensing show 284 lineaments with a main NE-SW direction, including 17 corresponding to existing faults in the area. The lineament density map shows that stations A1, A3 and A7 are located in the most fractured zones. The Bahr dimensional analysis shows that, at the same frequencies, Swift skew values of less than 0.1 and two-dimensionality parameter values of greater than 0.1 are observed at stations A3, A5 and A7, suggesting the presence of 2D structures correlating with the faults at these stations, oriented NE-SW, NE-SW and NNE-SSW respectively. In addition, the 2D and 3D resistivity models make it possible to distinguish at what depth the faults highlighted can be lubricated by water in the study area containing a total of 39 faults, 17 of which are normal and may be partially or fully lubricated depending on whether they interact with the hydrographic or drainage network. These identified lubricated faults need further study, as they could induce weak earthquakes.</div></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"28 1","pages":"Pages 99-115"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982325000031","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The development of remote sensing, with its many applications, combined with field data collected by geologists, geophysicists and geotechnical scientists, is now contributing to sustainable development in the mining, infrastructure and civil protection sectors. This study integrates remote sensing and the audiomagnetotelluric (AMT) method to identify faults lubricated or potentially lubricated by water in the vicinity of a dam. The data set includes SRTM_DEM images and AMT data from seven stations collected in the study area. The results from remote sensing show 284 lineaments with a main NE-SW direction, including 17 corresponding to existing faults in the area. The lineament density map shows that stations A1, A3 and A7 are located in the most fractured zones. The Bahr dimensional analysis shows that, at the same frequencies, Swift skew values of less than 0.1 and two-dimensionality parameter values of greater than 0.1 are observed at stations A3, A5 and A7, suggesting the presence of 2D structures correlating with the faults at these stations, oriented NE-SW, NE-SW and NNE-SSW respectively. In addition, the 2D and 3D resistivity models make it possible to distinguish at what depth the faults highlighted can be lubricated by water in the study area containing a total of 39 faults, 17 of which are normal and may be partially or fully lubricated depending on whether they interact with the hydrographic or drainage network. These identified lubricated faults need further study, as they could induce weak earthquakes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
85
审稿时长
48 weeks
期刊介绍: The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.
期刊最新文献
Comparison of random forest, gradient tree boosting, and classification and regression trees for mangrove cover change monitoring using Landsat imagery Surface deformation of the 26 January 2021 earthquake in the Sinjar – Hasakah Area, N Iraq and NE Syria, from Sentinel‑1A InSAR images New insights into the Menyuan Ms6.9 Earthquake, China: 3D slip inversion and fault modeling based on InSAR remote sensing approach Identifying water-lubricated faults in the vicinity of a dam Cot-DCN-YOLO: Self-attention-enhancing YOLOv8s for detecting garbage bins in urban street view images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1