An analyzer-surrogate-hybrid optimization framework for three-dimensional functionally graded material distribution

IF 4.4 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Structures Pub Date : 2024-07-15 DOI:10.1016/j.compstruc.2024.107472
Huy Tang , Nam V. Nguyen , Seunghye Lee , Jaehong Lee
{"title":"An analyzer-surrogate-hybrid optimization framework for three-dimensional functionally graded material distribution","authors":"Huy Tang ,&nbsp;Nam V. Nguyen ,&nbsp;Seunghye Lee ,&nbsp;Jaehong Lee","doi":"10.1016/j.compstruc.2024.107472","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a new optimization framework in which the structural analyzer (isogeometric analysis–IGA) and data-driven surrogate model (deep neural network–DNN) are sequentially and repeatedly employed as the evaluation function in the optimization process of the computationally heavy problem of three-dimensional material distribution optimization in functionally graded (FG) plates. The optimization process starts with IGA normally, and the key point is to collect the evaluated candidates as data to build DNNs as surrogates predicting the plate behavior. Then, in the surrogate-assisted phase, based on the best predicted value, one more IGA analysis could be performed to find a new truly best candidate solution. This is also to track the surrogates' accuracy, which is another key feature of the proposed framework. When the prediction becomes less accurate, the optimization process is back to using IGA, more data is collected, and the whole procedure is repeated. Compliance minimization in FG plates under static bending is considered with various plate geometries. Numerical results confirm that the proposed recurrent optimization framework reduces up to 38% computational time whilst ensuring that the best candidate solution is always exact and of highest optimality.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"302 ","pages":"Article 107472"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924002013","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new optimization framework in which the structural analyzer (isogeometric analysis–IGA) and data-driven surrogate model (deep neural network–DNN) are sequentially and repeatedly employed as the evaluation function in the optimization process of the computationally heavy problem of three-dimensional material distribution optimization in functionally graded (FG) plates. The optimization process starts with IGA normally, and the key point is to collect the evaluated candidates as data to build DNNs as surrogates predicting the plate behavior. Then, in the surrogate-assisted phase, based on the best predicted value, one more IGA analysis could be performed to find a new truly best candidate solution. This is also to track the surrogates' accuracy, which is another key feature of the proposed framework. When the prediction becomes less accurate, the optimization process is back to using IGA, more data is collected, and the whole procedure is repeated. Compliance minimization in FG plates under static bending is considered with various plate geometries. Numerical results confirm that the proposed recurrent optimization framework reduces up to 38% computational time whilst ensuring that the best candidate solution is always exact and of highest optimality.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维功能分级材料分布的分析器-代用-混合优化框架
本文提出了一种新的优化框架,其中结构分析器(等几何分析-IGA)和数据驱动代用模型(深度神经网络-DNN)作为评估函数,在计算繁重的功能分级(FG)板材三维材料分布优化问题的优化过程中依次重复使用。优化过程通常从 IGA 开始,关键是收集评估的候选材料作为数据,建立 DNN 作为预测板材行为的代用指标。然后,在代型辅助阶段,根据最佳预测值,再进行一次 IGA 分析,以找到新的真正最佳候选解决方案。这也是为了跟踪代用参数的准确性,这也是所提出框架的另一个主要特点。当预测的准确性降低时,优化过程将回到 IGA 分析,收集更多数据,然后重复整个过程。我们考虑了各种板材几何形状下 FG 板在静态弯曲下的顺应性最小化问题。数值结果证实,所提出的循环优化框架最多可减少 38% 的计算时间,同时确保最佳候选解决方案始终精确且最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
期刊最新文献
Prediction of nonlinear dynamic responses and generation of seismic fragility curves for steel moment frames using boosting machine learning techniques Bearing capacity analysis of RC slabs under cyclic loads: Dual numerical approaches Material parameter sensitivity analysis for intralaminar damage of laminated composites through direct differentiation Theoretical study of multipoint ground motion characteristics under V-shaped site induced P1 wave Bridge roughness scanned by Dual-Wheeled 3D test vehicle and processed by augmented Kalman filter: Theory and application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1