Application of voltammetry as a technique to monitor cathodic protection performance of steel in simulated soil solution

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Electrochemistry Communications Pub Date : 2024-07-14 DOI:10.1016/j.elecom.2024.107777
Mandlenkosi G.R. Mahlobo , Tumelo W.P. Seadira , Major M. Mabuza , Peter A. Olubambi
{"title":"Application of voltammetry as a technique to monitor cathodic protection performance of steel in simulated soil solution","authors":"Mandlenkosi G.R. Mahlobo ,&nbsp;Tumelo W.P. Seadira ,&nbsp;Major M. Mabuza ,&nbsp;Peter A. Olubambi","doi":"10.1016/j.elecom.2024.107777","DOIUrl":null,"url":null,"abstract":"<div><p>Cathodic protection (CP) in combination with organic coating is applied as a secondary technique to mitigate corrosion of buried steel in an effort to prolong the lifespan of the buried steel pipeline. This study was aimed at developing and applying an adequate technique for monitoring the electrochemical behaviour of buried steel in the presence of CP. A modified voltammetry procedure was applied on carbon steel immersed in simulated soil solution for four days under open circuit potential (OCP) before applying CP for further ten days. Electrochemical impedance spectroscopy (EIS) was also applied at various time intervals to investigate the electrochemistry at the steel/solution interface. The voltammetry experiments revealed that the corrosion rate peaked at 680 µm/yr after three days of being subjected to OCP and then decreased to 411 µm/yr on day four as a result of a passive layer development on the steel surface. The corrosion rate was reduced from 411 µm/yr to 8 µm/yr as result of CP application before fluctuating between 21 and 40 µm/yr. The examination of steel surface via x-ray diffraction revealed the presence of calcareous deposit which resulted due to the application of cathodic protection.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"166 ","pages":"Article 107777"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001206/pdfft?md5=980c9e6fc50d333bc9e8f450f241e038&pid=1-s2.0-S1388248124001206-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124001206","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Cathodic protection (CP) in combination with organic coating is applied as a secondary technique to mitigate corrosion of buried steel in an effort to prolong the lifespan of the buried steel pipeline. This study was aimed at developing and applying an adequate technique for monitoring the electrochemical behaviour of buried steel in the presence of CP. A modified voltammetry procedure was applied on carbon steel immersed in simulated soil solution for four days under open circuit potential (OCP) before applying CP for further ten days. Electrochemical impedance spectroscopy (EIS) was also applied at various time intervals to investigate the electrochemistry at the steel/solution interface. The voltammetry experiments revealed that the corrosion rate peaked at 680 µm/yr after three days of being subjected to OCP and then decreased to 411 µm/yr on day four as a result of a passive layer development on the steel surface. The corrosion rate was reduced from 411 µm/yr to 8 µm/yr as result of CP application before fluctuating between 21 and 40 µm/yr. The examination of steel surface via x-ray diffraction revealed the presence of calcareous deposit which resulted due to the application of cathodic protection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用伏安法监测模拟土壤溶液中钢铁的阴极保护性能
阴极保护(CP)与有机涂层相结合,是减轻埋地钢管腐蚀的辅助技术,目的是延长埋地钢管的使用寿命。本研究旨在开发和应用一种适当的技术,用于监测埋地钢管在 CP 存在下的电化学行为。在开路电位(OCP)下,将碳钢浸入模拟土壤溶液中四天,然后再施加氯化石蜡十天。此外,还在不同的时间间隔内使用电化学阻抗谱(EIS)来研究钢/溶液界面的电化学。伏安法实验显示,在使用 OCP 三天后,腐蚀速率达到峰值 680 微米/年,然后由于钢表面被动层的形成,腐蚀速率在第四天下降到 411 微米/年。使用氯化石蜡后,腐蚀速度从 411 微米/年降低到 8 微米/年,然后在 21 至 40 微米/年之间波动。通过 X 射线衍射对钢材表面进行的检查显示,由于采用了阴极保护,钢材表面出现了钙质沉积物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
期刊最新文献
In-situ solvothermal synthesis of free-binder NiCo2S4/nickel foam electrode for supercapacitor application: Effects of CTAB surfactant Investigation of the modification of gold electrodes by electrochemical molecularly imprinted polymers as a selective layer for the trace level electroanalysis of PAH Corrosion of nickel foam electrodes during hydrothermal reactions: The influence of a simple protective carbon black coating Low-power and cost-effective readout circuit design for compact semiconductor gas sensor systems Fabrication of patterned TiO2 nanotube layers utilizing a 3D printer platform and their electrochromic properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1