A three-zone hypoxia chamber capable of regulating unique oxygen and carbon dioxide partial pressures simultaneously

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-11 DOI:10.1016/j.ohx.2024.e00556
Zachary R. Sitte , Abel A. Miranda , Thomas J. DiProspero , Matthew R. Lockett
{"title":"A three-zone hypoxia chamber capable of regulating unique oxygen and carbon dioxide partial pressures simultaneously","authors":"Zachary R. Sitte ,&nbsp;Abel A. Miranda ,&nbsp;Thomas J. DiProspero ,&nbsp;Matthew R. Lockett","doi":"10.1016/j.ohx.2024.e00556","DOIUrl":null,"url":null,"abstract":"<div><p>Oxygen is a vital but often overlooked variable in tissue culture experiments. Physiologically relevant oxygen tensions range from partial pressures of 100 mmHg at the alveolar-capillary interface in the lung to less than 7.6 mmHg in the hypoxic regions of solid tumors. These values are markedly lower than the partial oxygen pressure of ambient air, which is standard experimental practice. Physiologically relevant culture environments are needed to better predict cellular and tissue-level responses to drugs or potential toxins. Three commonly used methods to regulate in vitro oxygen tension involve placing cells in 1) a hypoxia chamber, 2) setups that rely on mass transport-limited microenvironments, and 3) microfabricated devices. Hypoxia chambers have the lowest barrier to entry, as they do not require laboratories to change their tissue culture setups. Here, we present a gas-regulation system for a three-zone hypoxia chamber. Each zone can maintain independent environments, with partial pressure compositions of 1–21 % O<sub>2</sub> and 1–10 % CO<sub>2</sub>. The design incorporates small-scale fabrication techniques (e.g., laser cutting and 3D printing) and off-the-shelf electronic components for simple assembly. The hypoxia chambers are significantly lower in cost than the commercial counterparts: $1,400 for the control system or $4,100 for a complete three-zone chamber system<em>.</em></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000506/pdfft?md5=f5b09c1d42bae109e23b5c3be2c9421e&pid=1-s2.0-S2468067224000506-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Oxygen is a vital but often overlooked variable in tissue culture experiments. Physiologically relevant oxygen tensions range from partial pressures of 100 mmHg at the alveolar-capillary interface in the lung to less than 7.6 mmHg in the hypoxic regions of solid tumors. These values are markedly lower than the partial oxygen pressure of ambient air, which is standard experimental practice. Physiologically relevant culture environments are needed to better predict cellular and tissue-level responses to drugs or potential toxins. Three commonly used methods to regulate in vitro oxygen tension involve placing cells in 1) a hypoxia chamber, 2) setups that rely on mass transport-limited microenvironments, and 3) microfabricated devices. Hypoxia chambers have the lowest barrier to entry, as they do not require laboratories to change their tissue culture setups. Here, we present a gas-regulation system for a three-zone hypoxia chamber. Each zone can maintain independent environments, with partial pressure compositions of 1–21 % O2 and 1–10 % CO2. The design incorporates small-scale fabrication techniques (e.g., laser cutting and 3D printing) and off-the-shelf electronic components for simple assembly. The hypoxia chambers are significantly lower in cost than the commercial counterparts: $1,400 for the control system or $4,100 for a complete three-zone chamber system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三区缺氧室能够同时调节独特的氧气和二氧化碳分压
氧气是组织培养实验中的一个重要变量,但却经常被忽视。与生理相关的氧张力范围从肺泡-毛细血管界面的 100 毫米汞柱到实体瘤缺氧区域的低于 7.6 毫米汞柱。这些数值明显低于环境空气的氧分压,而环境空气的氧分压是标准的实验实践。为了更好地预测细胞和组织对药物或潜在毒素的反应,需要与生理相关的培养环境。调节体外氧张力的三种常用方法包括:1)将细胞置于缺氧室;2)依靠质量传输限制的微环境设置;3)微加工设备。低氧室的进入门槛最低,因为它不需要实验室改变组织培养设置。在这里,我们介绍一种用于三区缺氧室的气体调节系统。每个区都能维持独立的环境,氧气分压组成为 1-21 %,二氧化碳分压组成为 1-10 %。设计采用了小规模制造技术(如激光切割和三维打印)和现成的电子元件,组装简单。缺氧室的成本大大低于商业同类产品:控制系统的成本为 1,400 美元,完整的三区缺氧室系统的成本为 4,100 美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1