{"title":"Bioinspired in-sensor spectral adaptation for perceiving spectrally distinctive features","authors":"Bangsen Ouyang, Jialiang Wang, Guang Zeng, Jianmin Yan, Yue Zhou, Xixi Jiang, Bangjie Shao, Yang Chai","doi":"10.1038/s41928-024-01208-x","DOIUrl":null,"url":null,"abstract":"In challenging lighting conditions, machine vision often yields low-quality results. In situations where particular spectral signatures carry critical information, adapting the spectral sensitivity of visions systems to match the predominant spectra of the surrounding environment can improve light capture and image quality. Here we report spectra-adapted vision sensors based on arrays of back-to-back photodiodes. The spectral sensitivity of these bioinspired sensors can be tuned to match either the broadband visible spectrum or a narrow band within the near-infrared spectrum by applying different bias voltages. The process of spectral adaptation takes tens of microseconds, which is comparable with the frame rate (around 100 kHz) of state-of-the-art high-speed cameras. The spectral adaptation increases the Weber contrast of the scene by over ten times, resulting in increased recognition accuracy (from 33% to 90%) of features when exposed to intense visible-light glare. Photodiodes with a spectral response that can be adjusted between the visible and infrared regimes can be used to create imaging systems that work well under a range of challenging lighting conditions.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 8","pages":"705-713"},"PeriodicalIF":33.7000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01208-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In challenging lighting conditions, machine vision often yields low-quality results. In situations where particular spectral signatures carry critical information, adapting the spectral sensitivity of visions systems to match the predominant spectra of the surrounding environment can improve light capture and image quality. Here we report spectra-adapted vision sensors based on arrays of back-to-back photodiodes. The spectral sensitivity of these bioinspired sensors can be tuned to match either the broadband visible spectrum or a narrow band within the near-infrared spectrum by applying different bias voltages. The process of spectral adaptation takes tens of microseconds, which is comparable with the frame rate (around 100 kHz) of state-of-the-art high-speed cameras. The spectral adaptation increases the Weber contrast of the scene by over ten times, resulting in increased recognition accuracy (from 33% to 90%) of features when exposed to intense visible-light glare. Photodiodes with a spectral response that can be adjusted between the visible and infrared regimes can be used to create imaging systems that work well under a range of challenging lighting conditions.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.