Macro-micro decomposition for consistent and conservative model order reduction of hyperbolic shallow water moment equations: a study using POD-Galerkin and dynamical low-rank approximation

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED Advances in Computational Mathematics Pub Date : 2024-07-16 DOI:10.1007/s10444-024-10175-y
Julian Koellermeier, Philipp Krah, Jonas Kusch
{"title":"Macro-micro decomposition for consistent and conservative model order reduction of hyperbolic shallow water moment equations: a study using POD-Galerkin and dynamical low-rank approximation","authors":"Julian Koellermeier,&nbsp;Philipp Krah,&nbsp;Jonas Kusch","doi":"10.1007/s10444-024-10175-y","DOIUrl":null,"url":null,"abstract":"<div><p>Geophysical flow simulations using hyperbolic shallow water moment equations require an efficient discretization of a potentially large system of PDEs, the so-called moment system. This calls for tailored model order reduction techniques that allow for efficient and accurate simulations while guaranteeing physical properties like mass conservation. In this paper, we develop the first model reduction for the hyperbolic shallow water moment equations and achieve mass conservation. This is accomplished using a macro-micro decomposition of the model into a macroscopic (conservative) part and a microscopic (non-conservative) part with subsequent model reduction using either POD-Galerkin or dynamical low-rank approximation only on the microscopic (non-conservative) part. Numerical experiments showcase the performance of the new model reduction methods including high accuracy and fast computation times together with guaranteed conservation and consistency properties.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10175-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10175-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Geophysical flow simulations using hyperbolic shallow water moment equations require an efficient discretization of a potentially large system of PDEs, the so-called moment system. This calls for tailored model order reduction techniques that allow for efficient and accurate simulations while guaranteeing physical properties like mass conservation. In this paper, we develop the first model reduction for the hyperbolic shallow water moment equations and achieve mass conservation. This is accomplished using a macro-micro decomposition of the model into a macroscopic (conservative) part and a microscopic (non-conservative) part with subsequent model reduction using either POD-Galerkin or dynamical low-rank approximation only on the microscopic (non-conservative) part. Numerical experiments showcase the performance of the new model reduction methods including high accuracy and fast computation times together with guaranteed conservation and consistency properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对双曲浅水矩方程进行一致和保守模型阶次缩减的宏观-微观分解:使用 POD-Galerkin 和动态低阶近似的研究
使用双曲浅水矩方程进行地球物理流动模拟,需要对潜在的大型 PDE 系统(即所谓的矩系)进行高效离散化。这就要求采用量身定制的模型阶次缩减技术,在保证质量守恒等物理特性的同时进行高效、精确的模拟。在本文中,我们首次针对双曲浅水矩方程进行了模型缩减,并实现了质量守恒。这是通过将模型宏观-微观分解为宏观(保守)部分和微观(非保守)部分,然后仅在微观(非保守)部分使用 POD-Galerkin 或动态低阶近似进行模型还原来实现的。数值实验展示了新模型还原方法的性能,包括高精度、快速计算时间以及保证的守恒性和一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
期刊最新文献
Parametric model order reduction for a wildland fire model via the shifted POD-based deep learning method A scaling fractional asymptotical regularization method for linear inverse problems A difference finite element method based on nonconforming finite element methods for 3D elliptic problems An all-frequency stable integral system for Maxwell’s equations in 3-D penetrable media: continuous and discrete model analysis A reduced-order model for advection-dominated problems based on the Radon Cumulative Distribution Transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1