Yuwen Wei, Priyanuj Bhuyan, Suk Jin Kwon, Sihyun Kim, Yejin Bae, Mukesh Singh, Duy Thanh Tran, Minjeong Ha, Kwang-Un Jeong, Xing Ma, Byeongjin Park, Sungjune Park
{"title":"Liquid Metal Grid Patterned Thin Film Devices Toward Absorption-Dominant and Strain-Tunable Electromagnetic Interference Shielding","authors":"Yuwen Wei, Priyanuj Bhuyan, Suk Jin Kwon, Sihyun Kim, Yejin Bae, Mukesh Singh, Duy Thanh Tran, Minjeong Ha, Kwang-Un Jeong, Xing Ma, Byeongjin Park, Sungjune Park","doi":"10.1007/s40820-024-01457-7","DOIUrl":null,"url":null,"abstract":"<div><div>\n \n<ul>\n <li>\n <p>Multiple internal reflection-based absorption-dominant stretchable electromagnetic shielding thin film by incorporating liquid metal grid structure is developed.</p>\n </li>\n <li>\n <p>The device demonstrates high electromagnetic shielding effectiveness (SE) (SE<sub>T</sub> of up to 75 dB) with low reflectance (SE<sub>R</sub> of 1.5 dB at the resonant frequency).</p>\n </li>\n <li>\n <p>The shielding properties of the device can be tuned by adjusting the liquid metal patterned grid spaces upon strain.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"16 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255180/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01457-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple internal reflection-based absorption-dominant stretchable electromagnetic shielding thin film by incorporating liquid metal grid structure is developed.
The device demonstrates high electromagnetic shielding effectiveness (SE) (SET of up to 75 dB) with low reflectance (SER of 1.5 dB at the resonant frequency).
The shielding properties of the device can be tuned by adjusting the liquid metal patterned grid spaces upon strain.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.