Xiaomin Guo, Qian Luo, Miao Zhang, Shi Gang Liu, Xingbo Shi
{"title":"Ratiometric fluorescent determination of sulfadimethoxine in foods based on a dual-emission metal–organic framework","authors":"Xiaomin Guo, Qian Luo, Miao Zhang, Shi Gang Liu, Xingbo Shi","doi":"10.1007/s44211-024-00630-7","DOIUrl":null,"url":null,"abstract":"<div><p>Ratiometric fluorescence detection is endowed with higher accuracy than single fluorescence signal assay. In this work, we construct a ratiometric fluorescence probe for the facile quantification of sulfadimethoxine (SDM) in foods. By wrapping N-doped carbon dots (N-CDs) and gold nanoclusters (AuNCs) into zeolitic imidazolate framework-8 (ZIF-8), the nanocomposite of N-CDs/AuNCs@ZIF-8 is facilely prepared and emits two fluorescence including 475 nm from N-CDs and 650 nm from AuNCs. Since bovine serum albumin (BSA) is the stabilizer of AuNCs, SDM can form a complex with BSA, resulting in the fluorescence quenching of AuNCs at 650 nm by a static quenching mechanism. In contrast, SDM has a rare influence on the fluorescence of N-CDs (475 nm). As a result, the use of the probe of N-CDs/AuNCs@ZIF-8 for SDM detection enables simultaneous measurement of response signal and reference signal. Under the optimal condition, the SDM assay based on the probe has a good linear relationship within 10 to 2 × 10<sup>6</sup> ng/mL and the limit of detection (LOD) is low to 1.064 ng/mL. In addition, the fluorescent probe shows good reliability for the detection of SDM in practical food samples.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":"40 11","pages":"1987 - 1996"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s44211-024-00630-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ratiometric fluorescence detection is endowed with higher accuracy than single fluorescence signal assay. In this work, we construct a ratiometric fluorescence probe for the facile quantification of sulfadimethoxine (SDM) in foods. By wrapping N-doped carbon dots (N-CDs) and gold nanoclusters (AuNCs) into zeolitic imidazolate framework-8 (ZIF-8), the nanocomposite of N-CDs/AuNCs@ZIF-8 is facilely prepared and emits two fluorescence including 475 nm from N-CDs and 650 nm from AuNCs. Since bovine serum albumin (BSA) is the stabilizer of AuNCs, SDM can form a complex with BSA, resulting in the fluorescence quenching of AuNCs at 650 nm by a static quenching mechanism. In contrast, SDM has a rare influence on the fluorescence of N-CDs (475 nm). As a result, the use of the probe of N-CDs/AuNCs@ZIF-8 for SDM detection enables simultaneous measurement of response signal and reference signal. Under the optimal condition, the SDM assay based on the probe has a good linear relationship within 10 to 2 × 106 ng/mL and the limit of detection (LOD) is low to 1.064 ng/mL. In addition, the fluorescent probe shows good reliability for the detection of SDM in practical food samples.
期刊介绍:
Analytical Sciences is an international journal published monthly by The Japan Society for Analytical Chemistry. The journal publishes papers on all aspects of the theory and practice of analytical sciences, including fundamental and applied, inorganic and organic, wet chemical and instrumental methods.
This publication is supported in part by the Grant-in-Aid for Publication of Scientific Research Result of the Japanese Ministry of Education, Culture, Sports, Science and Technology.