{"title":"A cell-free fluorescence biosensor based on allosteric transcription factor NalC for detection of pentachlorophenol.","authors":"Shuting Chen, Chen Zhao, Xiaodan Kang, Xi Zhang, Bin Xue, Chenyu Li, Shang Wang, Xiaobo Yang, Chao Li, Zhigang Qiu, Jingfeng Wang, Zhiqiang Shen","doi":"10.1007/s10529-024-03511-1","DOIUrl":null,"url":null,"abstract":"<p><p>Pentachlorophenol (PCP) was once used as a pesticide, germicide, and preservative due to its stable properties and resistance to degradation. This study aimed to design a biosensor for the quantitative and prompt detection of capable of PCP. A cell-free fluorescence biosensor was developed while employing NalC, an allosteric Transcription Factor responsive to PCP and In Vitro Transcription. By adding a DNA template and PCP and employing Electrophoretic Mobility Shift Assay while monitoring the dynamic fluorescence changes in RNA, this study offers evidence of NalC's potential applicability in sensor systems developed for the specific detection of PCP. The biosensor showed the capability for the quantitative detection of PCP, with a Limit of Detection (LOD) of 0.21 μM. Following the addition of Nucleic Acid Sequence-Based Amplification, the fluorescence intensity of RNA revealed an excellent linear relationship with the concentration of PCP, showing a correlation coefficient (R<sup>2</sup>) of 0.9595. The final LOD was determined to be 0.002 μM. This study has successfully translated the determination of PCP into a fluorescent RNA output, thereby presenting a novel approach for detecting PCP within environmental settings.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"725-737"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03511-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pentachlorophenol (PCP) was once used as a pesticide, germicide, and preservative due to its stable properties and resistance to degradation. This study aimed to design a biosensor for the quantitative and prompt detection of capable of PCP. A cell-free fluorescence biosensor was developed while employing NalC, an allosteric Transcription Factor responsive to PCP and In Vitro Transcription. By adding a DNA template and PCP and employing Electrophoretic Mobility Shift Assay while monitoring the dynamic fluorescence changes in RNA, this study offers evidence of NalC's potential applicability in sensor systems developed for the specific detection of PCP. The biosensor showed the capability for the quantitative detection of PCP, with a Limit of Detection (LOD) of 0.21 μM. Following the addition of Nucleic Acid Sequence-Based Amplification, the fluorescence intensity of RNA revealed an excellent linear relationship with the concentration of PCP, showing a correlation coefficient (R2) of 0.9595. The final LOD was determined to be 0.002 μM. This study has successfully translated the determination of PCP into a fluorescent RNA output, thereby presenting a novel approach for detecting PCP within environmental settings.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.