Julie K Jadlowsky, Ju-Fang Chang, David H Spencer, John M Warrington, Bruce L Levine, Carl H June, Joseph A Fraietta, Nathan Singh
{"title":"Regulatory Considerations for Genome-Edited T-cell Therapies.","authors":"Julie K Jadlowsky, Ju-Fang Chang, David H Spencer, John M Warrington, Bruce L Levine, Carl H June, Joseph A Fraietta, Nathan Singh","doi":"10.1158/2326-6066.CIR-24-0482","DOIUrl":null,"url":null,"abstract":"<p><p>Methods to engineer the genomes of human cells for therapeutic intervention continue to advance at a remarkable pace. Chimeric antigen receptor-engineered T lymphocytes have pioneered the way for these therapies, initially beginning with insertions of chimeric antigen receptor transgenes into T-cell genomes using classical gene therapy vectors. The broad use of clustered regularly interspaced short palindromic repeats (CRISPR)-based technologies to edit endogenous genes has now opened the door to a new era of precision medicine. To add complexity, many engineered cellular therapies under development integrate gene therapy with genome editing to introduce novel biological functions and enhance therapeutic efficacy. Here, we review the current state of scientific, translational, and regulatory oversight of gene-edited cell products.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"1132-1135"},"PeriodicalIF":8.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371504/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0482","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Methods to engineer the genomes of human cells for therapeutic intervention continue to advance at a remarkable pace. Chimeric antigen receptor-engineered T lymphocytes have pioneered the way for these therapies, initially beginning with insertions of chimeric antigen receptor transgenes into T-cell genomes using classical gene therapy vectors. The broad use of clustered regularly interspaced short palindromic repeats (CRISPR)-based technologies to edit endogenous genes has now opened the door to a new era of precision medicine. To add complexity, many engineered cellular therapies under development integrate gene therapy with genome editing to introduce novel biological functions and enhance therapeutic efficacy. Here, we review the current state of scientific, translational, and regulatory oversight of gene-edited cell products.
改造人体细胞基因组以进行治疗干预的方法正以惊人的速度不断进步。嵌合抗原受体工程 T 淋巴细胞开创了这些疗法的先河,最初是利用传统的基因治疗载体将嵌合抗原受体转基因插入 T 细胞基因组。现在,基于聚类规则间隔短回文重复序列(CRISPR)技术的广泛应用为编辑内源基因打开了一扇门,开启了精准医疗的新时代。为了增加复杂性,许多正在开发的工程细胞疗法将基因治疗与基因组编辑相结合,以引入新的生物功能并提高疗效。在此,我们回顾了基因编辑细胞产品的科学、转化和监管现状。
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.