A Physics-Informed Deep Neural Network for Harmonization of CT Images

IF 4.5 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Biomedical Engineering Pub Date : 2024-07-16 DOI:10.1109/TBME.2024.3428399
Mojtaba Zarei;Saman Sotoudeh-Paima;Cindy McCabe;Ehsan Abadi;Ehsan Samei
{"title":"A Physics-Informed Deep Neural Network for Harmonization of CT Images","authors":"Mojtaba Zarei;Saman Sotoudeh-Paima;Cindy McCabe;Ehsan Abadi;Ehsan Samei","doi":"10.1109/TBME.2024.3428399","DOIUrl":null,"url":null,"abstract":"<bold><i>Objective</i>:</b>\n Computed Tomography (CT) quantification is affected by the variability in image acquisition and rendition. This paper aimed to reduce this variability by harmonizing the images utilizing physics-based deep neural networks (DNNs). \n<bold><i>Methods</i>:</b>\n An adversarial generative network was trained on virtual CT images acquired under various imaging conditions using a virtual imaging platform with 40 computational patient models. These models featured anthropomorphic lungs with different levels of pulmonary diseases, including nodules and emphysema. Imaging was conducted using a validated CT simulator at two dose levels and varying reconstruction kernels. The trained model was tested on an independent virtual test dataset and two clinical datasets. \n<bold><i>Results</i>:</b>\n On the virtual test set, the harmonizer improved the structural similarity index from 79.3 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 16.4% to 95.8 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 1.7%, normalized mean squared error from 16.7 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 9.7% to 9.2 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 1.7%, and peak signal-to-noise ratio from 27.7 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 3.7 dB to 32.2 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 1.6 dB. Moreover, the harmonized images yielded more precise quantification of emphysema-based imaging biomarkers for lung attenuation, LAA −950 from 5.6 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 8.7% to 0.23 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 0.16%, Perc 15 from 43.4 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 45.4 HU to 20.0 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 7.5 HU, and Lung Mass from 0.3 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 0.3 g to 0.1 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 0.2 g. In clinical data, the harmonizer reduced biomarker variability by an average of 70%. For lung nodules, harmonized images improved the detectability index by 6.5-fold and DNN-based precision by 6%. \n<bold><i>Conclusion</i>:</b>\n The proposed harmonizer significantly enhances image quality and quantification accuracy in CT imaging. \n<bold>Significance:</b>\n The study demonstrated the potential utility of image harmonization for consistent CT image quality and reliable quantification, which is crucial for clinical applications and patient management.","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"71 12","pages":"3494-3504"},"PeriodicalIF":4.5000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10599826/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Computed Tomography (CT) quantification is affected by the variability in image acquisition and rendition. This paper aimed to reduce this variability by harmonizing the images utilizing physics-based deep neural networks (DNNs). Methods: An adversarial generative network was trained on virtual CT images acquired under various imaging conditions using a virtual imaging platform with 40 computational patient models. These models featured anthropomorphic lungs with different levels of pulmonary diseases, including nodules and emphysema. Imaging was conducted using a validated CT simulator at two dose levels and varying reconstruction kernels. The trained model was tested on an independent virtual test dataset and two clinical datasets. Results: On the virtual test set, the harmonizer improved the structural similarity index from 79.3 $\pm$ 16.4% to 95.8 $\pm$ 1.7%, normalized mean squared error from 16.7 $\pm$ 9.7% to 9.2 $\pm$ 1.7%, and peak signal-to-noise ratio from 27.7 $\pm$ 3.7 dB to 32.2 $\pm$ 1.6 dB. Moreover, the harmonized images yielded more precise quantification of emphysema-based imaging biomarkers for lung attenuation, LAA −950 from 5.6 $\pm$ 8.7% to 0.23 $\pm$ 0.16%, Perc 15 from 43.4 $\pm$ 45.4 HU to 20.0 $\pm$ 7.5 HU, and Lung Mass from 0.3 $\pm$ 0.3 g to 0.1 $\pm$ 0.2 g. In clinical data, the harmonizer reduced biomarker variability by an average of 70%. For lung nodules, harmonized images improved the detectability index by 6.5-fold and DNN-based precision by 6%. Conclusion: The proposed harmonizer significantly enhances image quality and quantification accuracy in CT imaging. Significance: The study demonstrated the potential utility of image harmonization for consistent CT image quality and reliable quantification, which is crucial for clinical applications and patient management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于协调 CT 图像的物理信息深度神经网络。
计算机断层扫描(CT)的量化受到图像采集和呈现差异的影响。本文旨在利用基于物理的深度神经网络(DNN)协调图像,从而减少这种差异:方法:使用带有 40 个计算患者模型的虚拟成像平台,在各种成像条件下获取的虚拟 CT 图像上训练对抗生成网络。这些模型以患有不同程度肺部疾病(包括结节和肺气肿)的拟人肺为特征。在两种剂量水平和不同重建内核下,使用经过验证的 CT 模拟器进行成像。训练好的模型在一个独立的虚拟测试数据集和两个临床数据集上进行了测试:在虚拟测试集上,协调器将结构相似性指数从 79.3 ±16.4% 提高到 95.8 ±1.7%,归一化均方误差从 16.7 ±9.7% 降低到 9.2 ±1.7%,峰值信噪比从 27.7 ±3.7 dB 提高到 32.2 ±1.6 dB。此外,协调后的图像还能更精确地量化基于肺气肿的肺衰减成像生物标志物,LAA -950 从 5.6 ±8.7% 降至 0.23 ±0.16%,Perc 15 从 43.4 ±45.4 HU 降至 20.0 ±7.5 HU,肺质量从 0.3 ±0.3 g 降至 0.1 ±0.2 g。对于肺结节,协调后的图像将可检测性指数提高了 6.5 倍,基于 DNN 的精确度提高了 6%:结论:所提出的协调器大大提高了 CT 成像的图像质量和量化准确性:该研究证明了图像协调对于保持 CT 图像质量和可靠量化的潜在作用,这对于临床应用和患者管理至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
期刊最新文献
Shear Wave Anisotropic Imaging for Pennate Muscle Assessment Using a Tilted Supersonic Push with Elliptical Analytical Inversion. A Birdcage Volume Transmit Coil and 8 Channel Receive Array for Marmoset Brain Imaging at 7T. A Hybrid Distributed Capacitance Birdcage Coil for Small-Animal MR Imaging at 14.1 T. GONet: A Generalizable Deep Learning Model for Glaucoma Detection. Phase Correction of MR Spectroscopic Imaging Data Using Model-Based Signal Estimation and Extrapolation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1