{"title":"RETRACTION: Methyl Helicterate Inhibits Hepatic Stellate Cell Activation through Downregulating the ERK1/2 Signaling Pathway","authors":"","doi":"10.1002/jcb.30623","DOIUrl":null,"url":null,"abstract":"<p><b>RETRACTION:</b> Y. Wei, X. Zhang, S. Wen, S. Huang, Q. Huang, S. Lu, F. Bai, J. Nie, J. Wei, Z. Lu, and X. Lin. Methyl Helicterate Inhibits Hepatic Stellate Cell Activation Through Downregulating the ERK1/2 Signaling Pathway. <i>Journal of Cellular Biochemistry</i> 120, no. 9 (2019): 14936-14945, https://doi.org/10.1002/jcb.28756.</p><p>The above article, published online on 22 April 2019 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors; the journal Editor-in-Chief, Christian Behl; and Wiley Periodicals LLC. The retraction has been agreed due to concerns raised by third parties on the data presented in the article. Multiple image elements in Figures 2A, 3B, and 4 were found to have been previously published by the same author group in a different scientific context. Furthermore, splicing affecting Figures 5B and 5C has been detected. The authors state that, due to inadequate data management, they were unable to verify whether Figures 2A, 3B, and 4 pertain to this study or to other works, and that Figure 5B and 5C were inappropriately employed. The article is retracted as the editors have lost confidence in the accuracy of the data presented and consider the conclusions of the article to be invalid. The authors agree with the decision to retract the article and would like to extend their sincere apologies for any inconvenience caused.</p>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"125 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcb.30623","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular biochemistry","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcb.30623","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RETRACTION: Y. Wei, X. Zhang, S. Wen, S. Huang, Q. Huang, S. Lu, F. Bai, J. Nie, J. Wei, Z. Lu, and X. Lin. Methyl Helicterate Inhibits Hepatic Stellate Cell Activation Through Downregulating the ERK1/2 Signaling Pathway. Journal of Cellular Biochemistry 120, no. 9 (2019): 14936-14945, https://doi.org/10.1002/jcb.28756.
The above article, published online on 22 April 2019 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors; the journal Editor-in-Chief, Christian Behl; and Wiley Periodicals LLC. The retraction has been agreed due to concerns raised by third parties on the data presented in the article. Multiple image elements in Figures 2A, 3B, and 4 were found to have been previously published by the same author group in a different scientific context. Furthermore, splicing affecting Figures 5B and 5C has been detected. The authors state that, due to inadequate data management, they were unable to verify whether Figures 2A, 3B, and 4 pertain to this study or to other works, and that Figure 5B and 5C were inappropriately employed. The article is retracted as the editors have lost confidence in the accuracy of the data presented and consider the conclusions of the article to be invalid. The authors agree with the decision to retract the article and would like to extend their sincere apologies for any inconvenience caused.
期刊介绍:
The Journal of Cellular Biochemistry publishes descriptions of original research in which complex cellular, pathogenic, clinical, or animal model systems are studied by biochemical, molecular, genetic, epigenetic or quantitative ultrastructural approaches. Submission of papers reporting genomic, proteomic, bioinformatics and systems biology approaches to identify and characterize parameters of biological control in a cellular context are encouraged. The areas covered include, but are not restricted to, conditions, agents, regulatory networks, or differentiation states that influence structure, cell cycle & growth control, structure-function relationships.