Evaluation of unmodified human cell-derived extracellular vesicle mitochondrial deoxyribonucleic acid-based biodistribution in rodents

IF 15.5 1区 医学 Q1 CELL BIOLOGY Journal of Extracellular Vesicles Pub Date : 2024-07-17 DOI:10.1002/jev2.12489
Young-Woo Cho, Mi Young Cho, Jaehyeon Yoon, Da Eun Hong, Ju-young Lee, Hye Sun Park, Hyunseung Lee, Kwan Soo Hong, Lee Won-Kyu, Choi Saehae, Suk-Gil Song, Young-Woock Noh
{"title":"Evaluation of unmodified human cell-derived extracellular vesicle mitochondrial deoxyribonucleic acid-based biodistribution in rodents","authors":"Young-Woo Cho,&nbsp;Mi Young Cho,&nbsp;Jaehyeon Yoon,&nbsp;Da Eun Hong,&nbsp;Ju-young Lee,&nbsp;Hye Sun Park,&nbsp;Hyunseung Lee,&nbsp;Kwan Soo Hong,&nbsp;Lee Won-Kyu,&nbsp;Choi Saehae,&nbsp;Suk-Gil Song,&nbsp;Young-Woock Noh","doi":"10.1002/jev2.12489","DOIUrl":null,"url":null,"abstract":"<p>Recently, extracellular vesicles (EVs) have been developed as therapeutic targets for various diseases. Biodistribution is crucial for EVs intended for therapeutic purposes because it can determine the degree of on- and off-target effects. This study aimed to explore techniques to evaluate the biodistribution of unmodified EVs. We devised a novel quantitative polymerase chain reaction (qPCR)-based assay to detect unmodified EVs by targeting mitochondrial deoxyribonucleic acid (mtDNA), a constituent of EVs. We focused on specific mtDNA regions that exhibited homologous variations distinct from their rodent mtDNA counterparts to establish this analytical approach. Herein, we successfully designed primers and probes targeting human and rodent mtDNA sequences and developed a highly specific and sensitive qPCR method. Furthermore, the quantification range of EVs isolated from various cells differed based on the manufacturer and cell source. IRDye 800CW-labelled Expi293F EV mimetics were administered to the animals via the tail vein to compare the imaging test and mtDNA-qPCR results. The results obtained from imaging tests and mtDNA-qPCR to investigate EV biodistribution patterns revealed differences. The results revealed that our newly developed method effectively determined the biodistribution of unmodified EVs with high sensitivity and reproducibility.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 7","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12489","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.12489","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, extracellular vesicles (EVs) have been developed as therapeutic targets for various diseases. Biodistribution is crucial for EVs intended for therapeutic purposes because it can determine the degree of on- and off-target effects. This study aimed to explore techniques to evaluate the biodistribution of unmodified EVs. We devised a novel quantitative polymerase chain reaction (qPCR)-based assay to detect unmodified EVs by targeting mitochondrial deoxyribonucleic acid (mtDNA), a constituent of EVs. We focused on specific mtDNA regions that exhibited homologous variations distinct from their rodent mtDNA counterparts to establish this analytical approach. Herein, we successfully designed primers and probes targeting human and rodent mtDNA sequences and developed a highly specific and sensitive qPCR method. Furthermore, the quantification range of EVs isolated from various cells differed based on the manufacturer and cell source. IRDye 800CW-labelled Expi293F EV mimetics were administered to the animals via the tail vein to compare the imaging test and mtDNA-qPCR results. The results obtained from imaging tests and mtDNA-qPCR to investigate EV biodistribution patterns revealed differences. The results revealed that our newly developed method effectively determined the biodistribution of unmodified EVs with high sensitivity and reproducibility.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在啮齿动物体内评估基于线粒体脱氧核糖核酸的未修饰人细胞衍生细胞外囊泡生物分布。
最近,细胞外囊泡(EVs)被开发为治疗各种疾病的靶点。生物分布对用于治疗目的的EVs至关重要,因为它能决定靶上和靶下效应的程度。本研究旨在探索评估未修饰 EVs 生物分布的技术。我们设计了一种基于新型定量聚合酶链反应(qPCR)的检测方法,通过靶向线粒体脱氧核糖核酸(mtDNA)(EVs 的一种成分)来检测未修饰的 EVs。我们重点研究了表现出不同于啮齿动物mtDNA同源变异的特定mtDNA区域,以建立这种分析方法。在此,我们成功设计了针对人类和啮齿动物 mtDNA 序列的引物和探针,并开发了一种高度特异和灵敏的 qPCR 方法。此外,根据生产商和细胞来源的不同,从不同细胞中分离出的 EVs 的定量范围也不同。通过尾静脉给动物注射 IRDye 800CW 标记的 Expi293F EV 模拟物来比较成像测试和 mtDNA-qPCR 结果。成像测试和 mtDNA-qPCR 对 EV 生物分布模式的研究结果显示出差异。结果表明,我们新开发的方法能有效测定未经修饰的EV的生物分布,灵敏度高,重现性好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Extracellular Vesicles
Journal of Extracellular Vesicles Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
27.30
自引率
4.40%
发文量
115
审稿时长
12 weeks
期刊介绍: The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies. The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.
期刊最新文献
Extracellular vesicles containing SARS-CoV-2 proteins are associated with multi-organ dysfunction and worse outcomes in patients with severe COVID-19 Efficient enzyme-free isolation of brain-derived extracellular vesicles Hypoxia and TNF-alpha modulate extracellular vesicle release from human induced pluripotent stem cell-derived cardiomyocytes PlexinA1 (PLXNA1) as a novel scaffold protein for the engineering of extracellular vesicles A switch from lysosomal degradation to secretory autophagy initiates osteogenic bone metastasis in prostate cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1