Vishwa Ranjan Upadhyay, Vikram Ramesh, Harshit Kumar, Y M Somagond, Swagatika Priyadarsini, Aruna Kuniyal, Ved Prakash, Artabandhu Sahoo
{"title":"Phenomics in Livestock Research: Bottlenecks and Promises of Digital Phenotyping and Other Quantification Techniques on a Global Scale.","authors":"Vishwa Ranjan Upadhyay, Vikram Ramesh, Harshit Kumar, Y M Somagond, Swagatika Priyadarsini, Aruna Kuniyal, Ved Prakash, Artabandhu Sahoo","doi":"10.1089/omi.2024.0109","DOIUrl":null,"url":null,"abstract":"<p><p>Bottlenecks in moving genomics to real-life applications also include phenomics. This is true not only for genomics medicine and public health genomics but also in ecology and livestock phenomics. This expert narrative review explores the intricate relationship between genetic makeup and observable phenotypic traits across various biological levels in the context of livestock research. We unpack and emphasize the significance of precise phenotypic data in selective breeding outcomes and examine the multifaceted applications of phenomics, ranging from improvement to assessing welfare, reproductive traits, and environmental adaptation in livestock. As phenotypic traits exhibit strong correlations, their measurement alongside specific biological outcomes provides insights into performance, overall health, and clinical endpoints like morbidity and disease. In addition, automated assessment of livestock holds potential for monitoring the dynamic phenotypic traits across various species, facilitating a deeper comprehension of how they adapt to their environment and attendant stressors. A key challenge in genetic improvement in livestock is predicting individuals with optimal fitness without direct measurement. Temporal predictions from unmanned aerial systems can surpass genomic predictions, offering in-depth data on livestock. In the near future, digital phenotyping and digital biomarkers may further unravel the genetic intricacies of stress tolerance, adaptation and welfare aspects of animals enabling the selection of climate-resilient and productive livestock. This expert review thus delves into challenges associated with phenotyping and discusses technological advancements shaping the future of biological research concerning livestock.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/omi.2024.0109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Bottlenecks in moving genomics to real-life applications also include phenomics. This is true not only for genomics medicine and public health genomics but also in ecology and livestock phenomics. This expert narrative review explores the intricate relationship between genetic makeup and observable phenotypic traits across various biological levels in the context of livestock research. We unpack and emphasize the significance of precise phenotypic data in selective breeding outcomes and examine the multifaceted applications of phenomics, ranging from improvement to assessing welfare, reproductive traits, and environmental adaptation in livestock. As phenotypic traits exhibit strong correlations, their measurement alongside specific biological outcomes provides insights into performance, overall health, and clinical endpoints like morbidity and disease. In addition, automated assessment of livestock holds potential for monitoring the dynamic phenotypic traits across various species, facilitating a deeper comprehension of how they adapt to their environment and attendant stressors. A key challenge in genetic improvement in livestock is predicting individuals with optimal fitness without direct measurement. Temporal predictions from unmanned aerial systems can surpass genomic predictions, offering in-depth data on livestock. In the near future, digital phenotyping and digital biomarkers may further unravel the genetic intricacies of stress tolerance, adaptation and welfare aspects of animals enabling the selection of climate-resilient and productive livestock. This expert review thus delves into challenges associated with phenotyping and discusses technological advancements shaping the future of biological research concerning livestock.