首页 > 最新文献

Omics A Journal of Integrative Biology最新文献

英文 中文
DeepGenomeScan of 15 Worldwide Bovine Populations Detects Spatially Varying Positive Selection Signals. 对全球 15 个牛种群的 DeepGenomeScan 检测到空间上不同的正向选择信号。
IF 2.2 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-24 DOI: 10.1089/omi.2024.0154
Harshit Kumar, Xinghu Qin, Bharat Bhushan, Triveni Dutt, Manjit Panigrahi

Identifying genomic regions under selection is essential for understanding the genetic mechanisms driving species evolution and adaptation. Traditional methods often fall short in detecting complex, spatially varying selection signals. Recent advances in deep learning, however, present promising new approaches for uncovering subtle selection signals that traditional methods might miss. In this study, we utilized the deep learning framework DeepGenomeScan to detect spatially varying selection signatures across 15 bovine populations worldwide. Our analysis uncovered novel insights into selective sweep hotspots within the bovine genome, revealing key genes associated with physiological and adaptive traits that were previously undetected. We identified significant quantitative trait loci linked to milk protein and fat percentages. By comparing the selection signatures identified in this study with those reported in the Bovine Genome Variation Database, we discovered 38 novel genes under selection that were not identified through traditional methods. These genes are primarily associated with milk and meat yield and quality. Our findings enhance our understanding of spatially varying selection's impact on bovine genomic diversity, laying a foundation for future research in genetic improvement and conservation. This is the first deep learning-based study of selection signatures in cattle, offering new insights for evolutionary and livestock genomics research.

要了解驱动物种进化和适应的遗传机制,识别处于选择过程中的基因组区域至关重要。传统方法往往无法检测到复杂的、空间变化的选择信号。然而,深度学习的最新进展为发现传统方法可能忽略的微妙选择信号提供了前景广阔的新方法。在这项研究中,我们利用深度学习框架 DeepGenomeScan 在全球 15 个牛种群中检测空间变化的选择信号。我们的分析揭示了牛基因组中选择性扫描热点的新见解,揭示了以前未被发现的与生理和适应性特征相关的关键基因。我们发现了与牛奶蛋白质和脂肪百分比相关的重要数量性状位点。通过将本研究发现的选择特征与牛基因组变异数据库中报告的选择特征进行比较,我们发现了38个通过传统方法无法发现的新的选择基因。这些基因主要与牛奶和肉的产量和质量有关。我们的研究结果加深了我们对空间变化选择对牛基因组多样性影响的理解,为未来的遗传改良和保护研究奠定了基础。这是第一项基于深度学习的牛选择特征研究,为进化和家畜基因组学研究提供了新的见解。
{"title":"DeepGenomeScan of 15 Worldwide Bovine Populations Detects Spatially Varying Positive Selection Signals.","authors":"Harshit Kumar, Xinghu Qin, Bharat Bhushan, Triveni Dutt, Manjit Panigrahi","doi":"10.1089/omi.2024.0154","DOIUrl":"https://doi.org/10.1089/omi.2024.0154","url":null,"abstract":"<p><p>Identifying genomic regions under selection is essential for understanding the genetic mechanisms driving species evolution and adaptation. Traditional methods often fall short in detecting complex, spatially varying selection signals. Recent advances in deep learning, however, present promising new approaches for uncovering subtle selection signals that traditional methods might miss. In this study, we utilized the deep learning framework DeepGenomeScan to detect spatially varying selection signatures across 15 bovine populations worldwide. Our analysis uncovered novel insights into selective sweep hotspots within the bovine genome, revealing key genes associated with physiological and adaptive traits that were previously undetected. We identified significant quantitative trait loci linked to milk protein and fat percentages. By comparing the selection signatures identified in this study with those reported in the Bovine Genome Variation Database, we discovered 38 novel genes under selection that were not identified through traditional methods. These genes are primarily associated with milk and meat yield and quality. Our findings enhance our understanding of spatially varying selection's impact on bovine genomic diversity, laying a foundation for future research in genetic improvement and conservation. This is the first deep learning-based study of selection signatures in cattle, offering new insights for evolutionary and livestock genomics research.</p>","PeriodicalId":19530,"journal":{"name":"Omics A Journal of Integrative Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning-Aided Ultra-Low-Density Single Nucleotide Polymorphism Panel Helps to Identify the Tharparkar Cattle Breed: Lessons for Digital Transformation in Livestock Genomics. 机器学习辅助的超低密度单核苷酸多态性面板有助于识别塔帕卡尔牛品种:家畜基因组学数字化转型的启示。
IF 2.2 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-20 DOI: 10.1089/omi.2024.0153
Harshit Kumar, Manjit Panigrahi, Dongwon Seo, Sunghyun Cho, Bharat Bhushan, Triveni Dutt

Cattle breed identification is crucial for livestock research and sustainable food systems, and advances in genomics and artificial intelligence present new opportunities to address these challenges. This study investigates the identification of the Tharparkar cattle breed using genomics tools combined with machine learning (ML) techniques. By leveraging data from the Bovine SNP 50K chip, we developed a breed-specific panel of single nucleotide polymorphisms (SNPs) for Tharparkar cattle and integrated data from seven other Indian cattle populations to enhance panel robustness. Genome-wide association studies (GWAS) and principal component analysis were employed to identify 500 SNPs, which were then refined using ML models-AdaBoost, bagging tree, gradient boosting machines, and random forest-to determine the minimal number of SNPs needed for accurate breed identification. Panels of 23 and 48 SNPs achieved accuracy rates of 95.2-98.4%. Importantly, the identified SNPs were associated with key productive and adaptive traits, thus attesting to the value and potentials of digital transformation in livestock genomics. The ML-aided ultra-low-density SNP panel approach reported here not only facilitates breed identification but also contributes to preserving genetic diversity and guiding future breeding programs.

牛的品种识别对于家畜研究和可持续粮食系统至关重要,而基因组学和人工智能的进步为应对这些挑战提供了新的机遇。本研究利用基因组学工具与机器学习(ML)技术相结合,对塔帕卡尔牛的品种识别进行了研究。通过利用牛 SNP 50K 芯片的数据,我们为塔帕卡尔牛开发了一个品种特异性单核苷酸多态性(SNPs)面板,并整合了来自其他七个印度牛种群的数据,以增强面板的稳健性。利用全基因组关联研究(GWAS)和主成分分析鉴定出了 500 个 SNPs,然后利用 ML 模型--AdaBoost、bagging tree、梯度提升机和随机森林对这些 SNPs 进行了改进,以确定准确鉴定品种所需的最少 SNPs 数量。23 个和 48 个 SNP 的面板准确率达到 95.2-98.4%。重要的是,鉴定出的 SNP 与关键的生产性和适应性性状相关,从而证明了家畜基因组学中数字化转型的价值和潜力。本文报告的 ML 辅助超低密度 SNP 面板方法不仅有助于品种鉴定,还有助于保护遗传多样性和指导未来的育种计划。
{"title":"Machine Learning-Aided Ultra-Low-Density Single Nucleotide Polymorphism Panel Helps to Identify the Tharparkar Cattle Breed: Lessons for Digital Transformation in Livestock Genomics.","authors":"Harshit Kumar, Manjit Panigrahi, Dongwon Seo, Sunghyun Cho, Bharat Bhushan, Triveni Dutt","doi":"10.1089/omi.2024.0153","DOIUrl":"https://doi.org/10.1089/omi.2024.0153","url":null,"abstract":"<p><p>Cattle breed identification is crucial for livestock research and sustainable food systems, and advances in genomics and artificial intelligence present new opportunities to address these challenges. This study investigates the identification of the Tharparkar cattle breed using genomics tools combined with machine learning (ML) techniques. By leveraging data from the Bovine SNP 50K chip, we developed a breed-specific panel of single nucleotide polymorphisms (SNPs) for Tharparkar cattle and integrated data from seven other Indian cattle populations to enhance panel robustness. Genome-wide association studies (GWAS) and principal component analysis were employed to identify 500 SNPs, which were then refined using ML models-AdaBoost, bagging tree, gradient boosting machines, and random forest-to determine the minimal number of SNPs needed for accurate breed identification. Panels of 23 and 48 SNPs achieved accuracy rates of 95.2-98.4%. Importantly, the identified SNPs were associated with key productive and adaptive traits, thus attesting to the value and potentials of digital transformation in livestock genomics. The ML-aided ultra-low-density SNP panel approach reported here not only facilitates breed identification but also contributes to preserving genetic diversity and guiding future breeding programs.</p>","PeriodicalId":19530,"journal":{"name":"Omics A Journal of Integrative Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142292697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Do You Start a Revolution for Systems Medicine in a Health Innovation Ecosystem? Think Orthogonally and Change Assumptions. 如何在健康创新生态系统中掀起一场系统医学革命?正向思考,改变假设。
IF 2.2 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-18 DOI: 10.1089/omi.2024.0173
Vural Özdemir

This paper defines a revolution as an orthogonal change in direction, a 90-degree perpendicular turn from the status quo ways of thinking, being and doing, so as to create a complete break, an abolitionist rupture with current and past ways of producing knowledge. David Bowie was a relatable example of a revolutionary and orthogonal innovator who completely and courageously broke with the past and the present and opened up new vistas in music and performing arts. The late anthropologist and public intellectual David Graeber also argued that a revolution fundamentally changes the assumptions in a given field of inquiry. Changing the entrenched assumptions that are long ossified, outdated or uncritically internalized by a knowledge community and profession can have multiplying revolutionary effects on downstream knowledge production. Thinking orthogonally to change the prevailing assumptions is indeed a revolutionary act. Orthogonal innovation as described in this paper is not a repackaging of an innovation in a different field. An orthogonal innovation is proposed as coalescence of ideas drawn from orthogonal domains, e.g., epistemologically speaking as in medicine and political theory, with an eye to pave the way for unprecedented social change and innovation. Grounding systems medicine in political determinants of planetary health, to link two fields of inquiry that have remained isolated and orthogonal since the 17th century, is nothing short of a revolution and orthogonal innovation in the making. For systems medicine to be a truly revolutionary field, it ought to acknowledge that there is no single-issue health nor single-issue politics.

本文将 "革命 "定义为一种正交方向的改变,一种与现状的思维、存在和行为方式呈 90 度的垂直转向,从而与当前和过去的知识生产方式彻底决裂,一种废除式的断裂。大卫-鲍伊(David Bowie)就是一个可亲可敬的革命者和正交创新者的例子,他完全勇敢地与过去和现在决裂,开辟了音乐和表演艺术的新天地。已故人类学家和公共知识分子大卫-格雷伯(David Graeber)也认为,革命从根本上改变了特定研究领域的假设。改变知识界和专业界长期僵化、过时或不加批判地内化的根深蒂固的假设,会对下游的知识生产产生成倍的革命性影响。通过正交思考来改变普遍的假设确实是一种革命性的行为。本文所述的正交创新并不是不同领域创新的重新包装。本文提出的正交创新是将来自正交领域(如医学和政治理论中的认识论)的思想凝聚在一起,以期为前所未有的社会变革和创新铺平道路。系统医学立足于地球健康的政治决定因素,将自 17 世纪以来一直处于孤立和正交状态的两个研究领域联系起来,不啻为一场正在进行中的革命和正交创新。要使系统医学成为一个真正具有革命性的领域,就必须承认不存在单一的健康问题,也不存在单一的政治问题。
{"title":"How Do You Start a Revolution for Systems Medicine in a Health Innovation Ecosystem? Think Orthogonally and Change Assumptions.","authors":"Vural Özdemir","doi":"10.1089/omi.2024.0173","DOIUrl":"https://doi.org/10.1089/omi.2024.0173","url":null,"abstract":"<p><p>This paper defines a revolution as an orthogonal change in direction, a 90-degree perpendicular turn from the status quo ways of thinking, being and doing, so as to create a complete break, an abolitionist rupture with current and past ways of producing knowledge. David Bowie was a relatable example of a revolutionary and orthogonal innovator who completely and courageously broke with the past and the present and opened up new vistas in music and performing arts. The late anthropologist and public intellectual David Graeber also argued that a revolution fundamentally changes the <i>assumptions</i> in a given field of inquiry. Changing the entrenched assumptions that are long ossified, outdated or uncritically internalized by a knowledge community and profession can have multiplying revolutionary effects on downstream knowledge production. Thinking orthogonally to change the prevailing assumptions is indeed a revolutionary act. Orthogonal innovation as described in this paper is not a repackaging of an innovation in a different field. An orthogonal innovation is proposed as coalescence of ideas drawn from orthogonal domains, e.g., epistemologically speaking as in medicine and political theory, with an eye to pave the way for unprecedented social change and innovation. Grounding systems medicine in political determinants of planetary health, to link two fields of inquiry that have remained isolated and orthogonal since the 17th century, is nothing short of a revolution and orthogonal innovation in the making. For systems medicine to be a truly revolutionary field, it ought to acknowledge that there is no single-issue health nor single-issue politics.</p>","PeriodicalId":19530,"journal":{"name":"Omics A Journal of Integrative Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142292696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the Door for Precision Medicine in Rare Conditions: Structural and Functional Consequences of Missense ACVR1 Variants. 打开罕见疾病精准医疗之门:错义 ACVR1 变异的结构和功能后果
IF 3.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-17 DOI: 10.1089/omi.2024.0140
Garima Nagar,Shradheya R R Gupta,Vanshika Rustagi,Ravindran Kumar Pramod,Archana Singh,Monika Pahuja,Indrakant Kumar Singh
Rare diseases and conditions have thus far received relatively less attention in the field of precision/personalized medicine than common chronic diseases. There is a dire need for orphan drug discovery and therapeutics in ways that are informed by the precision/personalized medicine scholarship. Moreover, people with rare conditions, when considered collectively across diseases worldwide, impact many communities. In this overarching context, Activin A Receptor Type 1 (ACVR1) is a transmembrane kinase from the transforming growth factor-β superfamily and plays a critical role in modulating the bone morphogenetic protein signaling. Missense variants of the ACVR1 gene result in modifications in structure and function and, by extension, abnormalities and have been predominantly linked with two rare conditions: fibrodysplasia ossificans progressiva and diffuse intrinsic pontine glioma. We report here an extensive bioinformatic analyses assessing the pool of 50,951 variants and forecast seven highly destabilizing mutations (R206H, G356D, R258S, G328W, G328E, R375P, and R202I) that can significantly alter the structure and function of the native protein. Protein-protein interaction and ConSurf analyses revealed the crucial interactions and localization of highly deleterious mutations in highly conserved domains that may impact the binding and functioning of the protein. cBioPortal, CanSAR Black, and existing literature affirmed the association of these destabilizing mutations with posterior fossa ependymoma, uterine corpus carcinoma, and pediatric brain cancer. The current findings suggest these deleterious nonsynonymous single nucleotide polymorphisms as potential candidates for future functional annotations and validations associated with rare conditions, further aiding the development of precision medicine in rare diseases.
与常见慢性病相比,罕见疾病和病症在精准/个性化医疗领域受到的关注相对较少。目前急需以精准/个性化医疗学术研究为指导的孤儿药发现和治疗方法。此外,如果将全球所有疾病的罕见病患者放在一起考虑,他们会对许多社区产生影响。在这种大背景下,Activin A Receptor Type 1(ACVR1)是转化生长因子-β超家族中的一种跨膜激酶,在调节骨形态发生蛋白信号传导中发挥着关键作用。ACVR1 基因的错义变异会导致结构和功能的改变,进而导致异常,主要与两种罕见疾病有关:渐进性骨纤维增生症和弥漫性固有桥脑胶质瘤。我们在此报告了一项广泛的生物信息学分析,评估了 50951 个变体,并预测了 7 个高度不稳定的突变(R206H、G356D、R258S、G328W、G328E、R375P 和 R202I),这些突变可显著改变原生蛋白的结构和功能。cBioPortal、CanSAR Black和现有文献证实了这些不稳定突变与后窝上皮瘤、子宫体癌和小儿脑癌有关。目前的研究结果表明,这些有害的非同义单核苷酸多态性是未来与罕见病相关的功能注释和验证的潜在候选对象,可进一步帮助罕见病精准医疗的发展。
{"title":"Unlocking the Door for Precision Medicine in Rare Conditions: Structural and Functional Consequences of Missense ACVR1 Variants.","authors":"Garima Nagar,Shradheya R R Gupta,Vanshika Rustagi,Ravindran Kumar Pramod,Archana Singh,Monika Pahuja,Indrakant Kumar Singh","doi":"10.1089/omi.2024.0140","DOIUrl":"https://doi.org/10.1089/omi.2024.0140","url":null,"abstract":"Rare diseases and conditions have thus far received relatively less attention in the field of precision/personalized medicine than common chronic diseases. There is a dire need for orphan drug discovery and therapeutics in ways that are informed by the precision/personalized medicine scholarship. Moreover, people with rare conditions, when considered collectively across diseases worldwide, impact many communities. In this overarching context, Activin A Receptor Type 1 (ACVR1) is a transmembrane kinase from the transforming growth factor-β superfamily and plays a critical role in modulating the bone morphogenetic protein signaling. Missense variants of the ACVR1 gene result in modifications in structure and function and, by extension, abnormalities and have been predominantly linked with two rare conditions: fibrodysplasia ossificans progressiva and diffuse intrinsic pontine glioma. We report here an extensive bioinformatic analyses assessing the pool of 50,951 variants and forecast seven highly destabilizing mutations (R206H, G356D, R258S, G328W, G328E, R375P, and R202I) that can significantly alter the structure and function of the native protein. Protein-protein interaction and ConSurf analyses revealed the crucial interactions and localization of highly deleterious mutations in highly conserved domains that may impact the binding and functioning of the protein. cBioPortal, CanSAR Black, and existing literature affirmed the association of these destabilizing mutations with posterior fossa ependymoma, uterine corpus carcinoma, and pediatric brain cancer. The current findings suggest these deleterious nonsynonymous single nucleotide polymorphisms as potential candidates for future functional annotations and validations associated with rare conditions, further aiding the development of precision medicine in rare diseases.","PeriodicalId":19530,"journal":{"name":"Omics A Journal of Integrative Biology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systems Biology and Machine Learning Identify Genetic Overlaps Between Lung Cancer and Gastroesophageal Reflux Disease. 系统生物学和机器学习识别肺癌和胃食管反流病的基因重叠。
IF 3.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-13 DOI: 10.1089/omi.2024.0150
Sanjukta Dasgupta
One Health and planetary health place emphasis on the common molecular mechanisms that connect several complex human diseases as well as human and planetary ecosystem health. For example, not only lung cancer (LC) and gastroesophageal reflux disease (GERD) pose a significant burden on planetary health, but also the coexistence of GERD in patients with LC is often associated with a poor prognosis. This study reports on the genetic overlaps between these two conditions using systems biology-driven bioinformatics and machine learning-based algorithms. A total of nine hub genes including IGHV1-3, COL3A1, ITGA11, COL1A1, MS4A1, SPP1, MMP9, MMP7, and LOC102723407 were found to be significantly altered in both LC and GERD as compared with controls and with pathway analyses suggesting a significant association with the matrix remodeling pathway. The expression of these genes was validated in two additional datasets. Random forest and K-nearest neighbor, two machine learning-based algorithms, achieved accuracies of 89% and 85% for distinguishing LC and GERD, respectively, from controls using these hub genes. Additionally, potential drug targets were identified, with molecular docking confirming the binding affinity of doxycycline to matrix metalloproteinase 7 (binding affinity: -6.8 kcal/mol). The present study is the first of its kind that combines in silico and machine learning algorithms to identify the gene signatures that relate to both LC and GERD and promising drug candidates that warrant further research in relation to therapeutic innovation in LC and GERD. Finally, this study also suggests upstream regulators, including microRNAs and transcription factors, that can inform future mechanistic research on LC and GERD.
一体健康 "和 "地球健康 "强调的是将几种复杂的人类疾病以及人类和地球生态系统健康联系起来的共同分子机制。例如,肺癌(LC)和胃食管反流病(GERD)不仅对地球健康造成重大负担,而且肺癌患者同时患有胃食管反流病往往预后不佳。本研究利用系统生物学驱动的生物信息学和基于机器学习的算法,报告了这两种疾病之间的基因重叠。研究发现,与对照组相比,LC 和胃食管反流病的九个中心基因(包括 IGHV1-3、COL3A1、ITGA11、COL1A1、MS4A1、SPP1、MMP9、MMP7 和 LOC102723407)都发生了显著改变,并且通路分析表明这些基因与基质重塑通路有显著关联。这些基因的表达在另外两个数据集中得到了验证。随机森林和 K 最近邻这两种基于机器学习的算法利用这些中枢基因区分 LC 和胃食管反流病与对照组的准确率分别达到了 89% 和 85%。此外,通过分子对接确认了强力霉素与基质金属蛋白酶7的结合亲和力(结合亲和力:-6.8 kcal/mol),从而确定了潜在的药物靶点。本研究是同类研究中首例结合硅学和机器学习算法来确定与半结肠癌和胃食管反流病相关的基因特征以及有希望的候选药物的研究,这些候选药物在半结肠癌和胃食管反流病的治疗创新方面值得进一步研究。最后,本研究还提出了上游调控因子,包括微RNA和转录因子,为今后有关LC和胃食管反流病的机理研究提供参考。
{"title":"Systems Biology and Machine Learning Identify Genetic Overlaps Between Lung Cancer and Gastroesophageal Reflux Disease.","authors":"Sanjukta Dasgupta","doi":"10.1089/omi.2024.0150","DOIUrl":"https://doi.org/10.1089/omi.2024.0150","url":null,"abstract":"One Health and planetary health place emphasis on the common molecular mechanisms that connect several complex human diseases as well as human and planetary ecosystem health. For example, not only lung cancer (LC) and gastroesophageal reflux disease (GERD) pose a significant burden on planetary health, but also the coexistence of GERD in patients with LC is often associated with a poor prognosis. This study reports on the genetic overlaps between these two conditions using systems biology-driven bioinformatics and machine learning-based algorithms. A total of nine hub genes including IGHV1-3, COL3A1, ITGA11, COL1A1, MS4A1, SPP1, MMP9, MMP7, and LOC102723407 were found to be significantly altered in both LC and GERD as compared with controls and with pathway analyses suggesting a significant association with the matrix remodeling pathway. The expression of these genes was validated in two additional datasets. Random forest and K-nearest neighbor, two machine learning-based algorithms, achieved accuracies of 89% and 85% for distinguishing LC and GERD, respectively, from controls using these hub genes. Additionally, potential drug targets were identified, with molecular docking confirming the binding affinity of doxycycline to matrix metalloproteinase 7 (binding affinity: -6.8 kcal/mol). The present study is the first of its kind that combines in silico and machine learning algorithms to identify the gene signatures that relate to both LC and GERD and promising drug candidates that warrant further research in relation to therapeutic innovation in LC and GERD. Finally, this study also suggests upstream regulators, including microRNAs and transcription factors, that can inform future mechanistic research on LC and GERD.","PeriodicalId":19530,"journal":{"name":"Omics A Journal of Integrative Biology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does Microbiome Contribute to Longevity? Compositional and Functional Differences in Gut Microbiota in Chinese Long-Living (>90 Years) and Elderly (65-74 Years) Adults. 微生物群是否有助于长寿?中国长寿者(大于 90 岁)和老年人(65-74 岁)肠道微生物群的组成和功能差异。
IF 2.2 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-08-16 DOI: 10.1089/omi.2024.0120
Jie Liu, Wen-Jing Wang, Ge-Fang Xu, Yue-Xia Wang, Ying Lin, Xin Zheng, Shui-Hong Yao, Kun-Hua Zheng

The study of longevity and its determinants has been revitalized with the rise of microbiome scholarship. The gut microbiota have been established to play essential protective, metabolic, and physiological roles in human health and disease. The gut dysbiosis has been identified as an important factor contributing to the development of multiple diseases. Accordingly, it is reasonable to hypothesize that the gut microbiota of long-living individuals have healthy antiaging-associated gut microbes, which, by extension, might provide specific molecular targets for antiaging treatments and interventions. In the present study, we compared the gut microbiota of Chinese individuals in two different age groups, long-living adults (aged over 90 years) and elderly adults (aged 65-74 years) who were free of major diseases. We found significantly lower relative abundances of bacteria in the genera Sutterella and Megamonas in the long-living individuals. Furthermore, we established that while biological processes such as autophagy (GO:0006914) and telomere maintenance through semiconservative replication (GO:0032201) were enhanced in the long-living group, response to lipopolysaccharide (GO:0032496), nicotinamide adenine dinucleotide oxidation (GO:0006116), and S-adenosyl methionine metabolism (GO:0046500) were weakened. Moreover, the two groups were found to differ with respect to amino acid metabolism. We suggest that these compositional and functional differences in the gut microbiota may potentially be associated with mechanisms that contribute to determining longevity or aging.

随着微生物组学术研究的兴起,对长寿及其决定因素的研究也焕发出新的活力。肠道微生物群在人类健康和疾病中发挥着重要的保护、代谢和生理作用。肠道菌群失调已被确认为导致多种疾病发生的重要因素。因此,我们有理由假设,长寿人群的肠道微生物群中存在健康的抗衰老相关肠道微生物,进而为抗衰老治疗和干预提供特定的分子靶标。在本研究中,我们比较了两个不同年龄组中国人的肠道微生物群,即长寿成人(90 岁以上)和无重大疾病的老年人(65-74 岁)。我们发现,在长寿人群中,Sutterella 和 Megamonas 属细菌的相对丰度明显较低。此外,我们还发现,长寿组的自噬(GO:0006914)和通过半保守复制维持端粒(GO:0032201)等生物过程增强了,而对脂多糖(GO:0032496)、烟酰胺腺嘌呤二核苷酸氧化(GO:0006116)和S-腺苷蛋氨酸代谢(GO:0046500)的反应则减弱了。此外,两组在氨基酸代谢方面也存在差异。我们认为,肠道微生物群的这些组成和功能差异可能与决定长寿或衰老的机制有关。
{"title":"Does Microbiome Contribute to Longevity? Compositional and Functional Differences in Gut Microbiota in Chinese Long-Living (>90 Years) and Elderly (65-74 Years) Adults.","authors":"Jie Liu, Wen-Jing Wang, Ge-Fang Xu, Yue-Xia Wang, Ying Lin, Xin Zheng, Shui-Hong Yao, Kun-Hua Zheng","doi":"10.1089/omi.2024.0120","DOIUrl":"10.1089/omi.2024.0120","url":null,"abstract":"<p><p>The study of longevity and its determinants has been revitalized with the rise of microbiome scholarship. The gut microbiota have been established to play essential protective, metabolic, and physiological roles in human health and disease. The gut dysbiosis has been identified as an important factor contributing to the development of multiple diseases. Accordingly, it is reasonable to hypothesize that the gut microbiota of long-living individuals have healthy antiaging-associated gut microbes, which, by extension, might provide specific molecular targets for antiaging treatments and interventions. In the present study, we compared the gut microbiota of Chinese individuals in two different age groups, long-living adults (aged over 90 years) and elderly adults (aged 65-74 years) who were free of major diseases. We found significantly lower relative abundances of bacteria in the genera <i>Sutterella</i> and <i>Megamonas</i> in the long-living individuals. Furthermore, we established that while biological processes such as autophagy (GO:0006914) and telomere maintenance through semiconservative replication (GO:0032201) were enhanced in the long-living group, response to lipopolysaccharide (GO:0032496), nicotinamide adenine dinucleotide oxidation (GO:0006116), and <i>S</i>-adenosyl methionine metabolism (GO:0046500) were weakened. Moreover, the two groups were found to differ with respect to amino acid metabolism. We suggest that these compositional and functional differences in the gut microbiota may potentially be associated with mechanisms that contribute to determining longevity or aging.</p>","PeriodicalId":19530,"journal":{"name":"Omics A Journal of Integrative Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for OMICS: A Journal of Integrative Biology. 罗莎琳德-富兰克林学会自豪地宣布《OMICS: A Journal of Integrative Biology》2023 年度获奖者。
IF 2.2 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 DOI: 10.1089/omi.2024.78325.rfs2023
Theodora Katsila
{"title":"Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for <i>OMICS: A Journal of Integrative Biology</i>.","authors":"Theodora Katsila","doi":"10.1089/omi.2024.78325.rfs2023","DOIUrl":"10.1089/omi.2024.78325.rfs2023","url":null,"abstract":"","PeriodicalId":19530,"journal":{"name":"Omics A Journal of Integrative Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding Beyond Genetic Subtypes in B-Cell Acute Lymphoblastic Leukemia: A Pathway-Based Stratification of Patients for Precision Oncology. 超越 B 细胞急性淋巴细胞白血病的基因亚型:基于路径的精准肿瘤学患者分层。
IF 2.2 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-08-19 DOI: 10.1089/omi.2024.0145
Ozlem Ulucan

Precision oncology promises individually tailored drugs and clinical care for patients with cancer: That is, "the right drug, for the right patient, at the right dose, and at the right time." Although stratification of the risk for treatment resistance and toxicity is key to precision oncology, there are multiple ways in which such stratification can be achieved, for example, genetic, functional pathway based, among others. Moving toward precision oncology is sorely needed in the case of acute lymphoblastic leukemia (ALL) wherein adult patients display survival rates ranging from 30% to 70%. The present study reports on the pathway activity signature of adult B-ALL, with an eye to precision oncology. Transcriptome profiles from three different expression datasets, comprising 346 patients who were adolescents or adults with B-ALL, were harnessed to determine the activity of signaling pathways commonly disrupted in B-ALL. Pathway activity analyses revealed that Ph-like ALL closely resembles Ph-positive ALL. Although this was the case at the average pathway activity level, the pathway activity patterns in B-ALL differ from genetic subtypes. Importantly, clustering analysis revealed that five distinct clusters exist in B-ALL patients based on pathway activity, with each cluster displaying a unique pattern of pathway activation. Identifying pathway-based subtypes thus appears to be crucial, considering the inherent heterogeneity among patients with the same genetic subtype. In conclusion, a pathway-based stratification of the B-ALL could potentially allow for simultaneously targeting highly active pathways within each ALL subtype, and thus might open up new avenues of innovation for personalized/precision medicine in this cancer that continues to have poor prognosis in adult patients compared with the children.

精准肿瘤学承诺为癌症患者提供量身定制的药物和临床治疗:即 "在正确的时间、以正确的剂量、为正确的患者提供正确的药物"。虽然耐药性和毒性风险分层是精准肿瘤学的关键,但实现这种分层有多种方法,例如基于基因、功能通路等。急性淋巴细胞白血病(ALL)成人患者的存活率在30%到70%之间,因此亟需向精准肿瘤学迈进。本研究报告了成人 B-ALL 的通路活性特征,着眼于精准肿瘤学。研究人员利用来自三个不同表达数据集的转录组图谱(包括346名青少年或成人B-ALL患者)来确定B-ALL中常见信号通路的活性。通路活性分析表明,Ph 样 ALL 与 Ph 阳性 ALL 非常相似。虽然在平均通路活性水平上是如此,但B-ALL的通路活性模式因基因亚型而异。重要的是,聚类分析显示,根据通路活性,B-ALL 患者中存在五个不同的群组,每个群组都显示出独特的通路激活模式。因此,考虑到同一基因亚型患者之间固有的异质性,识别基于通路的亚型似乎至关重要。总之,对B-ALL进行基于通路的分层有可能同时针对每种ALL亚型中的高活性通路,从而为这种癌症的个性化/精准医疗开辟新的创新途径,因为与儿童相比,成年患者的预后仍然较差。
{"title":"Expanding Beyond Genetic Subtypes in B-Cell Acute Lymphoblastic Leukemia: A Pathway-Based Stratification of Patients for Precision Oncology.","authors":"Ozlem Ulucan","doi":"10.1089/omi.2024.0145","DOIUrl":"10.1089/omi.2024.0145","url":null,"abstract":"<p><p>Precision oncology promises individually tailored drugs and clinical care for patients with cancer: That is, \"the right drug, for the right patient, at the right dose, and at the right time.\" Although stratification of the risk for treatment resistance and toxicity is key to precision oncology, there are multiple ways in which such stratification can be achieved, for example, genetic, functional pathway based, among others. Moving toward precision oncology is sorely needed in the case of acute lymphoblastic leukemia (ALL) wherein adult patients display survival rates ranging from 30% to 70%. The present study reports on the pathway activity signature of adult B-ALL, with an eye to precision oncology. Transcriptome profiles from three different expression datasets, comprising 346 patients who were adolescents or adults with B-ALL, were harnessed to determine the activity of signaling pathways commonly disrupted in B-ALL. Pathway activity analyses revealed that Ph-like ALL closely resembles Ph-positive ALL. Although this was the case at the average pathway activity level, the pathway activity patterns in B-ALL differ from genetic subtypes. Importantly, clustering analysis revealed that five distinct clusters exist in B-ALL patients based on pathway activity, with each cluster displaying a unique pattern of pathway activation. Identifying pathway-based subtypes thus appears to be crucial, considering the inherent heterogeneity among patients with the same genetic subtype. In conclusion, a pathway-based stratification of the B-ALL could potentially allow for simultaneously targeting highly active pathways within each ALL subtype, and thus might open up new avenues of innovation for personalized/precision medicine in this cancer that continues to have poor prognosis in adult patients compared with the children.</p>","PeriodicalId":19530,"journal":{"name":"Omics A Journal of Integrative Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Will Precision Medicine Meet Digital Health? A Systematic Review of Pharmacogenomics Clinical Decision Support Systems Used in Clinical Practice. 精准医学能否满足数字健康?临床实践中使用的药物基因组学临床决策支持系统的系统回顾。
IF 2.2 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-08-13 DOI: 10.1089/omi.2024.0131
Anastasia Farmaki, Evangelos Manolopoulos, Pantelis Natsiavas

Digital health, an emerging scientific domain, attracts increasing attention as artificial intelligence and relevant software proliferate. Pharmacogenomics (PGx) is a core component of precision/personalized medicine driven by the overarching motto "the right drug, for the right patient, at the right dose, and the right time." PGx takes into consideration patients' genomic variations influencing drug efficacy and side effects. Despite its potentials for individually tailored therapeutics and improved clinical outcomes, adoption of PGx in clinical practice remains slow. We suggest that e-health tools such as clinical decision support systems (CDSSs) can help accelerate the PGx, precision/personalized medicine, and digital health emergence in everyday clinical practice worldwide. Herein, we present a systematic review that examines and maps the PGx-CDSSs used in clinical practice, including their salient features in both technical and clinical dimensions. Using Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines and research of the literature, 29 relevant journal articles were included in total, and 19 PGx-CDSSs were identified. In addition, we observed 10 technical components developed mostly as part of research initiatives, 7 of which could potentially facilitate future PGx-CDSSs implementation worldwide. Most of these initiatives are deployed in the United States, indicating a noticeable lack of, and the veritable need for, similar efforts globally, including Europe.

数字健康是一个新兴的科学领域,随着人工智能和相关软件的普及,它吸引了越来越多的关注。药物基因组学(PGx)是精准医疗/个性化医疗的核心组成部分,其核心理念是 "对症下药、因人而异、适时适量"。PGx 考虑了影响药物疗效和副作用的患者基因组变异。尽管 PGx 具有为患者量身定制治疗方案和改善临床疗效的潜力,但其在临床实践中的应用仍然缓慢。我们认为,临床决策支持系统(CDSS)等电子医疗工具有助于加快 PGx、精准/个性化医疗和数字医疗在全球日常临床实践中的应用。在此,我们将对临床实践中使用的 PGx-CDSS 进行系统回顾,包括其在技术和临床方面的突出特点。通过系统综述和元分析首选报告项目指南和文献研究,我们共纳入了 29 篇相关期刊论文,并确定了 19 种 PGx-CDSS。此外,我们还观察到了 10 个主要作为研究计划一部分而开发的技术组件,其中 7 个有可能促进未来 PGx-CDSS 在全球的实施。这些计划大多在美国实施,这表明全球(包括欧洲)明显缺乏类似的工作,而且确实需要这样的工作。
{"title":"Will Precision Medicine Meet Digital Health? A Systematic Review of Pharmacogenomics Clinical Decision Support Systems Used in Clinical Practice.","authors":"Anastasia Farmaki, Evangelos Manolopoulos, Pantelis Natsiavas","doi":"10.1089/omi.2024.0131","DOIUrl":"10.1089/omi.2024.0131","url":null,"abstract":"<p><p>Digital health, an emerging scientific domain, attracts increasing attention as artificial intelligence and relevant software proliferate. Pharmacogenomics (PGx) is a core component of precision/personalized medicine driven by the overarching motto \"the right drug, for the right patient, at the right dose, and the right time.\" PGx takes into consideration patients' genomic variations influencing drug efficacy and side effects. Despite its potentials for individually tailored therapeutics and improved clinical outcomes, adoption of PGx in clinical practice remains slow. We suggest that e-health tools such as clinical decision support systems (CDSSs) can help accelerate the PGx, precision/personalized medicine, and digital health emergence in everyday clinical practice worldwide. Herein, we present a systematic review that examines and maps the PGx-CDSSs used in clinical practice, including their salient features in both technical and clinical dimensions. Using Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines and research of the literature, 29 relevant journal articles were included in total, and 19 PGx-CDSSs were identified. In addition, we observed 10 technical components developed mostly as part of research initiatives, 7 of which could potentially facilitate future PGx-CDSSs implementation worldwide. Most of these initiatives are deployed in the United States, indicating a noticeable lack of, and the veritable need for, similar efforts globally, including Europe.</p>","PeriodicalId":19530,"journal":{"name":"Omics A Journal of Integrative Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enriching Anticancer Drug Pipeline with Potential Inhibitors of Cyclin-Dependent Kinase-8 Identified from Natural Products. 从天然产品中发现潜在的 Cyclin-Dependent Kinase-8 抑制剂,丰富抗癌药物产品线。
IF 2.2 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-08-16 DOI: 10.1089/omi.2024.0128
Zehra, Afzal Hussain, Mohamed F AlAjmi, Romana Ishrat, Md Imtaiyaz Hassan

Cyclin-dependent kinase 8 (CDK8) is highly expressed in various cancers and common complex human diseases, and an important therapeutic target for drug discovery and development. The CDK8 inhibitors are actively sought after, especially among natural products. We performed a virtual screening using the ZINC library comprising approximately 90,000 natural compounds. We applied Lipinski's rule of five, absorption, distribution, metabolism, excretion, and toxicity properties, and pan-assay interference compounds filter to eliminate promiscuous binders. Subsequently, the filtered compounds underwent molecular docking to predict their binding affinity and interactions with the CDK8 protein. Interaction analysis were carried out to elucidate the interaction mechanism of the screened hits with binding pockets of the CDK8. The ZINC02152165, ZINC04236005, and ZINC02134595 were selected with appreciable specificity and affinity with CDK8. An all-atom molecular dynamic (MD) simulation followed by essential dynamics was performed for 200 ns. Taken together, the results suggest that ZINC02152165, ZINC04236005, and ZINC02134595 can be harnessed as potential leads in therapeutic development. Moreover, the binding of the molecules brings change in protein conformation in a way that blocks the ATP-binding site of the protein, obstructing its kinase activity. These new findings from natural products offer insights into the molecular mechanisms underlying CDK8 inhibition. CDK8 was previously associated with behavioral and neurological diseases such as autism spectrum disorder, and cancers, for example, colorectal, prostate, breast, and acute myeloid leukemia. Hence, we call for further research and experimental validation, and with an eye to inform future clinical drug discovery and development in these therapeutic fields.

细胞周期蛋白依赖性激酶 8(CDK8)在各种癌症和常见的复杂人类疾病中高度表达,是药物发现和开发的重要治疗靶点。CDK8 抑制剂是人们积极寻找的目标,尤其是在天然产物中。我们利用由大约 90,000 种天然化合物组成的 ZINC 库进行了虚拟筛选。我们采用了利宾斯基五项原则、吸收、分布、代谢、排泄和毒性特性以及泛检测干扰化合物过滤器来剔除杂乱的结合剂。随后,对筛选出的化合物进行分子对接,以预测它们与 CDK8 蛋白的结合亲和力和相互作用。为了阐明筛选出的化合物与 CDK8 蛋白结合口袋的相互作用机制,还进行了相互作用分析。筛选出的 ZINC02152165、ZINC04236005 和 ZINC02134595 与 CDK8 具有明显的特异性和亲和性。在进行了 200 ns 的全原子分子动力学(MD)模拟后,又进行了本质动力学模拟。综上所述,研究结果表明,ZINC02152165、ZINC04236005 和 ZINC02134595 可作为潜在的治疗开发线索。此外,这些分子的结合会改变蛋白质的构象,从而阻断蛋白质的 ATP 结合位点,阻碍其激酶活性。这些来自天然产品的新发现让人们对 CDK8 抑制作用的分子机制有了更深入的了解。CDK8 以前与自闭症谱系障碍等行为和神经疾病以及结直肠癌、前列腺癌、乳腺癌和急性髓性白血病等癌症有关。因此,我们呼吁开展进一步的研究和实验验证,并着眼于为这些治疗领域未来的临床药物发现和开发提供信息。
{"title":"Enriching Anticancer Drug Pipeline with Potential Inhibitors of Cyclin-Dependent Kinase-8 Identified from Natural Products.","authors":"Zehra, Afzal Hussain, Mohamed F AlAjmi, Romana Ishrat, Md Imtaiyaz Hassan","doi":"10.1089/omi.2024.0128","DOIUrl":"10.1089/omi.2024.0128","url":null,"abstract":"<p><p>Cyclin-dependent kinase 8 (CDK8) is highly expressed in various cancers and common complex human diseases, and an important therapeutic target for drug discovery and development. The CDK8 inhibitors are actively sought after, especially among natural products. We performed a virtual screening using the ZINC library comprising approximately 90,000 natural compounds. We applied Lipinski's rule of five, absorption, distribution, metabolism, excretion, and toxicity properties, and pan-assay interference compounds filter to eliminate promiscuous binders. Subsequently, the filtered compounds underwent molecular docking to predict their binding affinity and interactions with the CDK8 protein. Interaction analysis were carried out to elucidate the interaction mechanism of the screened hits with binding pockets of the CDK8. The ZINC02152165, ZINC04236005, and ZINC02134595 were selected with appreciable specificity and affinity with CDK8. An all-atom molecular dynamic (MD) simulation followed by essential dynamics was performed for 200 ns. Taken together, the results suggest that ZINC02152165, ZINC04236005, and ZINC02134595 can be harnessed as potential leads in therapeutic development. Moreover, the binding of the molecules brings change in protein conformation in a way that blocks the ATP-binding site of the protein, obstructing its kinase activity. These new findings from natural products offer insights into the molecular mechanisms underlying CDK8 inhibition. CDK8 was previously associated with behavioral and neurological diseases such as autism spectrum disorder, and cancers, for example, colorectal, prostate, breast, and acute myeloid leukemia. Hence, we call for further research and experimental validation, and with an eye to inform future clinical drug discovery and development in these therapeutic fields.</p>","PeriodicalId":19530,"journal":{"name":"Omics A Journal of Integrative Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Omics A Journal of Integrative Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1