Research on identification of flight cadets' cognitive load based on multi-source physiological data and CGAN-DBN model.

IF 2 3区 工程技术 Q3 ENGINEERING, INDUSTRIAL Ergonomics Pub Date : 2024-07-17 DOI:10.1080/00140139.2024.2380340
Ting Pan, Haibo Wang, Haiqing Si, Yixuan Li, Gen Li, Yijin Zhu
{"title":"Research on identification of flight cadets' cognitive load based on multi-source physiological data and CGAN-DBN model.","authors":"Ting Pan, Haibo Wang, Haiqing Si, Yixuan Li, Gen Li, Yijin Zhu","doi":"10.1080/00140139.2024.2380340","DOIUrl":null,"url":null,"abstract":"<p><p>Modern aircraft cockpit system is highly information-intensive. Pilots often need to receive a large amount of information and make correct judgments and decisions in a short time. However, cognitive load can affect their ability to perceive, judge and make decisions accurately. Furthermore, the excessive cognitive load will induce incorrect operations and even lead to flight accidents. Accordingly, the research on cognitive load is crucial to reduce errors and even accidents caused by human factors. By using physiological acquisition systems such as eye movement, ECG, and respiration, multi-source physiological signals of flight cadets performing different flight tasks during the flight simulation experiment are obtained. Based on the characteristic indexes extracted from multi-source physiological data, the CGAN-DBN model is established by combining the conditional generative adversarial networks (CGAN) model with the deep belief network (DBN) model to identify the flight cadets' cognitive load. The research results show that the flight cadets' cognitive load identification based on the CGAN-DBN model established has high accuracy. And it can effectively identify the cognitive load of flight cadets. The research paper has important practical significance to reduce the flight accidents caused by the high cognitive load of pilots.</p>","PeriodicalId":50503,"journal":{"name":"Ergonomics","volume":" ","pages":"1-19"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00140139.2024.2380340","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Modern aircraft cockpit system is highly information-intensive. Pilots often need to receive a large amount of information and make correct judgments and decisions in a short time. However, cognitive load can affect their ability to perceive, judge and make decisions accurately. Furthermore, the excessive cognitive load will induce incorrect operations and even lead to flight accidents. Accordingly, the research on cognitive load is crucial to reduce errors and even accidents caused by human factors. By using physiological acquisition systems such as eye movement, ECG, and respiration, multi-source physiological signals of flight cadets performing different flight tasks during the flight simulation experiment are obtained. Based on the characteristic indexes extracted from multi-source physiological data, the CGAN-DBN model is established by combining the conditional generative adversarial networks (CGAN) model with the deep belief network (DBN) model to identify the flight cadets' cognitive load. The research results show that the flight cadets' cognitive load identification based on the CGAN-DBN model established has high accuracy. And it can effectively identify the cognitive load of flight cadets. The research paper has important practical significance to reduce the flight accidents caused by the high cognitive load of pilots.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多源生理数据和 CGAN-DBN 模型的飞行学员认知负荷识别研究。
现代飞机驾驶舱系统是高度信息密集型的。飞行员往往需要在短时间内接收大量信息并做出正确的判断和决策。然而,认知负荷会影响他们准确感知、判断和决策的能力。此外,过度的认知负荷会诱发错误操作,甚至导致飞行事故。因此,对认知负荷的研究对于减少人为因素造成的错误甚至事故至关重要。利用眼动、心电、呼吸等生理采集系统,获取飞行学员在模拟飞行实验中执行不同飞行任务时的多源生理信号。根据从多源生理数据中提取的特征指标,结合条件生成对抗网络(CGAN)模型和深度信念网络(DBN)模型,建立了CGAN-DBN模型,用于识别飞行学员的认知负荷。研究结果表明,基于所建立的 CGAN-DBN 模型的飞行学员认知负荷识别具有较高的准确性。研究结果表明,基于 CGAN-DBN 模型的飞行学员认知负荷识别具有较高的准确性,能有效识别飞行学员的认知负荷。该研究论文对减少因飞行员认知负荷过高而导致的飞行事故具有重要的现实意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ergonomics
Ergonomics 工程技术-工程:工业
CiteScore
4.60
自引率
12.50%
发文量
147
审稿时长
6 months
期刊介绍: Ergonomics, also known as human factors, is the scientific discipline that seeks to understand and improve human interactions with products, equipment, environments and systems. Drawing upon human biology, psychology, engineering and design, Ergonomics aims to develop and apply knowledge and techniques to optimise system performance, whilst protecting the health, safety and well-being of individuals involved. The attention of ergonomics extends across work, leisure and other aspects of our daily lives. The journal Ergonomics is an international refereed publication, with a 60 year tradition of disseminating high quality research. Original submissions, both theoretical and applied, are invited from across the subject, including physical, cognitive, organisational and environmental ergonomics. Papers reporting the findings of research from cognate disciplines are also welcome, where these contribute to understanding equipment, tasks, jobs, systems and environments and the corresponding needs, abilities and limitations of people. All published research articles in this journal have undergone rigorous peer review, based on initial editor screening and anonymous refereeing by independent expert referees.
期刊最新文献
Daily stress detection from real-life speeches using acoustic and semantic information. Ergonomic interventions in Kalamkari block printing: addressing challenges and preserving tradition. Development and validation of e-scooter riding behavior questionnaire (ERBQ) among Korean riders. Pain in the upper back is prevailing more than pain in the lower back amongst workers of building construction; a cohort study. Evaluating the use of systems thinking methods in healthcare: a RE-AIM analysis of AcciMap and Net-HARMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1