{"title":"Research on identification of flight cadets' cognitive load based on multi-source physiological data and CGAN-DBN model.","authors":"Ting Pan, Haibo Wang, Haiqing Si, Yixuan Li, Gen Li, Yijin Zhu","doi":"10.1080/00140139.2024.2380340","DOIUrl":null,"url":null,"abstract":"<p><p>Modern aircraft cockpit system is highly information-intensive. Pilots often need to receive a large amount of information and make correct judgments and decisions in a short time. However, cognitive load can affect their ability to perceive, judge and make decisions accurately. Furthermore, the excessive cognitive load will induce incorrect operations and even lead to flight accidents. Accordingly, the research on cognitive load is crucial to reduce errors and even accidents caused by human factors. By using physiological acquisition systems such as eye movement, ECG, and respiration, multi-source physiological signals of flight cadets performing different flight tasks during the flight simulation experiment are obtained. Based on the characteristic indexes extracted from multi-source physiological data, the CGAN-DBN model is established by combining the conditional generative adversarial networks (CGAN) model with the deep belief network (DBN) model to identify the flight cadets' cognitive load. The research results show that the flight cadets' cognitive load identification based on the CGAN-DBN model established has high accuracy. And it can effectively identify the cognitive load of flight cadets. The research paper has important practical significance to reduce the flight accidents caused by the high cognitive load of pilots.</p>","PeriodicalId":50503,"journal":{"name":"Ergonomics","volume":" ","pages":"1-19"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00140139.2024.2380340","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Modern aircraft cockpit system is highly information-intensive. Pilots often need to receive a large amount of information and make correct judgments and decisions in a short time. However, cognitive load can affect their ability to perceive, judge and make decisions accurately. Furthermore, the excessive cognitive load will induce incorrect operations and even lead to flight accidents. Accordingly, the research on cognitive load is crucial to reduce errors and even accidents caused by human factors. By using physiological acquisition systems such as eye movement, ECG, and respiration, multi-source physiological signals of flight cadets performing different flight tasks during the flight simulation experiment are obtained. Based on the characteristic indexes extracted from multi-source physiological data, the CGAN-DBN model is established by combining the conditional generative adversarial networks (CGAN) model with the deep belief network (DBN) model to identify the flight cadets' cognitive load. The research results show that the flight cadets' cognitive load identification based on the CGAN-DBN model established has high accuracy. And it can effectively identify the cognitive load of flight cadets. The research paper has important practical significance to reduce the flight accidents caused by the high cognitive load of pilots.
期刊介绍:
Ergonomics, also known as human factors, is the scientific discipline that seeks to understand and improve human interactions with products, equipment, environments and systems. Drawing upon human biology, psychology, engineering and design, Ergonomics aims to develop and apply knowledge and techniques to optimise system performance, whilst protecting the health, safety and well-being of individuals involved. The attention of ergonomics extends across work, leisure and other aspects of our daily lives.
The journal Ergonomics is an international refereed publication, with a 60 year tradition of disseminating high quality research. Original submissions, both theoretical and applied, are invited from across the subject, including physical, cognitive, organisational and environmental ergonomics. Papers reporting the findings of research from cognate disciplines are also welcome, where these contribute to understanding equipment, tasks, jobs, systems and environments and the corresponding needs, abilities and limitations of people.
All published research articles in this journal have undergone rigorous peer review, based on initial editor screening and anonymous refereeing by independent expert referees.