Jamal Esmaelpoor, Tommy Peng, Beth Jelfs, Darren Mao, Maureen J Shader, Colette M McKay
{"title":"Resting-State Functional Connectivity Predicts Cochlear-Implant Speech Outcomes.","authors":"Jamal Esmaelpoor, Tommy Peng, Beth Jelfs, Darren Mao, Maureen J Shader, Colette M McKay","doi":"10.1097/AUD.0000000000001564","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Cochlear implants (CIs) have revolutionized hearing restoration for individuals with severe or profound hearing loss. However, a substantial and unexplained variability persists in CI outcomes, even when considering subject-specific factors such as age and the duration of deafness. In a pioneering study, we use resting-state functional near-infrared spectroscopy to predict speech-understanding outcomes before and after CI implantation. Our hypothesis centers on resting-state functional connectivity (FC) reflecting brain plasticity post-hearing loss and implantation, specifically targeting the average clustering coefficient in resting FC networks to capture variation among CI users.</p><p><strong>Design: </strong>Twenty-three CI candidates participated in this study. Resting-state functional near-infrared spectroscopy data were collected preimplantation and at 1 month, 3 months, and 1 year postimplantation. Speech understanding performance was assessed using consonant-nucleus-consonant words in quiet and Bamford-Kowal-Bench sentences in noise 1-year postimplantation. Resting-state FC networks were constructed using regularized partial correlation, and the average clustering coefficient was measured in the signed weighted networks as a predictive measure for implantation outcomes.</p><p><strong>Results: </strong>Our findings demonstrate a significant correlation between the average clustering coefficient in resting-state functional networks and speech understanding outcomes, both pre- and postimplantation.</p><p><strong>Conclusions: </strong>This approach uses an easily deployable resting-state functional brain imaging metric to predict speech-understanding outcomes in implant recipients. The results indicate that the average clustering coefficient, both pre- and postimplantation, correlates with speech understanding outcomes.</p>","PeriodicalId":55172,"journal":{"name":"Ear and Hearing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ear and Hearing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/AUD.0000000000001564","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Cochlear implants (CIs) have revolutionized hearing restoration for individuals with severe or profound hearing loss. However, a substantial and unexplained variability persists in CI outcomes, even when considering subject-specific factors such as age and the duration of deafness. In a pioneering study, we use resting-state functional near-infrared spectroscopy to predict speech-understanding outcomes before and after CI implantation. Our hypothesis centers on resting-state functional connectivity (FC) reflecting brain plasticity post-hearing loss and implantation, specifically targeting the average clustering coefficient in resting FC networks to capture variation among CI users.
Design: Twenty-three CI candidates participated in this study. Resting-state functional near-infrared spectroscopy data were collected preimplantation and at 1 month, 3 months, and 1 year postimplantation. Speech understanding performance was assessed using consonant-nucleus-consonant words in quiet and Bamford-Kowal-Bench sentences in noise 1-year postimplantation. Resting-state FC networks were constructed using regularized partial correlation, and the average clustering coefficient was measured in the signed weighted networks as a predictive measure for implantation outcomes.
Results: Our findings demonstrate a significant correlation between the average clustering coefficient in resting-state functional networks and speech understanding outcomes, both pre- and postimplantation.
Conclusions: This approach uses an easily deployable resting-state functional brain imaging metric to predict speech-understanding outcomes in implant recipients. The results indicate that the average clustering coefficient, both pre- and postimplantation, correlates with speech understanding outcomes.
期刊介绍:
From the basic science of hearing and balance disorders to auditory electrophysiology to amplification and the psychological factors of hearing loss, Ear and Hearing covers all aspects of auditory and vestibular disorders. This multidisciplinary journal consolidates the various factors that contribute to identification, remediation, and audiologic and vestibular rehabilitation. It is the one journal that serves the diverse interest of all members of this professional community -- otologists, audiologists, educators, and to those involved in the design, manufacture, and distribution of amplification systems. The original articles published in the journal focus on assessment, diagnosis, and management of auditory and vestibular disorders.