Sijie Yang , Yaping Li , Mingye Zhang , Qitong Xu , Chang Xie , Zhengce Wan , Lulu Song , Yongman Lv , Youjie Wang , Hui Chen , Surong Mei
{"title":"Individual and joint effects of organophosphate esters and hypertension or diabetes on renal injury among Chinese adults","authors":"Sijie Yang , Yaping Li , Mingye Zhang , Qitong Xu , Chang Xie , Zhengce Wan , Lulu Song , Yongman Lv , Youjie Wang , Hui Chen , Surong Mei","doi":"10.1016/j.ijheh.2024.114424","DOIUrl":null,"url":null,"abstract":"<div><p>Exposure to environmental contaminants and the development of hypertension and diabetes represent crucial risk factors for chronic kidney disease (CKD). Toxicological studies have revealed that organophosphate esters (OPEs) impair kidney function. However, the joint effects of OPE exposure on kidney injury and the interactions of OPE exposure with hypertension or diabetes on kidney injury remain unclear. Our study aimed to investigate the individual and joint effects of OPE exposure on renal injury, as well as the potential interaction between OPE exposure and hypertension or diabetes on kidney injury. The study enrolled 1938 participants from Wuhan, China. To explore the relationship between OPE exposure and renal injury, we conducted multivariate linear and logistic regression analysis. The results indicated that each unit increase in 4-hydroxyphenyl diphenyl phosphate (4-HO-DPHP), bis(2-butoxyethyl) phosphate (BBOEP), and tris(2-chloroethyl) phosphate (TCEP) (1 μg/L-ln transformed) was associated with a decreased 0.57 mL/min/1.73 m<sup>2</sup> (95%CI: -1.05, −0.09), 0.85 mL/min/1.73 m<sup>2</sup> (95%CI: -1.52, −0.19) and 1.24 mL/min/1.73 m<sup>2</sup> (95%CI: -2.26, −0.23) of estimated glomerular filtration rate (eGFR), while each unit increase in 4-HO-DPHP and BBOEP (1 μg/L-ln transformed) was associated with 14% and 20% elevation of incident impaired renal function (IRF) risk. Notably the highest tertile of BCIPHIPP was positively associated with eGFR, although the p for trend > 0.05. We employed Bayesian kernel machine regression (BKMR) and quartile-based g-computation (qgcomp) models to explore the joint effects of OPE mixtures on eGFR and IRF. Both the results of BKMR and qgcomp model consistently demonstrated negative associations between OPE mixtures and eGFR, and TCEP and 4-HO-DPHP were major contributors. Furthermore, we observed multiplicative interactions of diphenyl phosphate (DPHP), BBOEP, di-ocresyl phosphate (DoCP) & di-p-cresyl phosphate (DpCP), 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP) and hypertension or diabetes on kidney injury (all <em>P</em><0.05). Those with diabetes or hypertension and higher OPE metabolite concentrations had increased risk of kidney function impairment compared to those who did not have diabetes or hypertension. These findings suggest that specific OPE exposure may elevate the risk of renal injury, particularly among hypertensive and diabetic populations.</p></div>","PeriodicalId":13994,"journal":{"name":"International journal of hygiene and environmental health","volume":"261 ","pages":"Article 114424"},"PeriodicalIF":4.5000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of hygiene and environmental health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1438463924001056","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Exposure to environmental contaminants and the development of hypertension and diabetes represent crucial risk factors for chronic kidney disease (CKD). Toxicological studies have revealed that organophosphate esters (OPEs) impair kidney function. However, the joint effects of OPE exposure on kidney injury and the interactions of OPE exposure with hypertension or diabetes on kidney injury remain unclear. Our study aimed to investigate the individual and joint effects of OPE exposure on renal injury, as well as the potential interaction between OPE exposure and hypertension or diabetes on kidney injury. The study enrolled 1938 participants from Wuhan, China. To explore the relationship between OPE exposure and renal injury, we conducted multivariate linear and logistic regression analysis. The results indicated that each unit increase in 4-hydroxyphenyl diphenyl phosphate (4-HO-DPHP), bis(2-butoxyethyl) phosphate (BBOEP), and tris(2-chloroethyl) phosphate (TCEP) (1 μg/L-ln transformed) was associated with a decreased 0.57 mL/min/1.73 m2 (95%CI: -1.05, −0.09), 0.85 mL/min/1.73 m2 (95%CI: -1.52, −0.19) and 1.24 mL/min/1.73 m2 (95%CI: -2.26, −0.23) of estimated glomerular filtration rate (eGFR), while each unit increase in 4-HO-DPHP and BBOEP (1 μg/L-ln transformed) was associated with 14% and 20% elevation of incident impaired renal function (IRF) risk. Notably the highest tertile of BCIPHIPP was positively associated with eGFR, although the p for trend > 0.05. We employed Bayesian kernel machine regression (BKMR) and quartile-based g-computation (qgcomp) models to explore the joint effects of OPE mixtures on eGFR and IRF. Both the results of BKMR and qgcomp model consistently demonstrated negative associations between OPE mixtures and eGFR, and TCEP and 4-HO-DPHP were major contributors. Furthermore, we observed multiplicative interactions of diphenyl phosphate (DPHP), BBOEP, di-ocresyl phosphate (DoCP) & di-p-cresyl phosphate (DpCP), 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP) and hypertension or diabetes on kidney injury (all P<0.05). Those with diabetes or hypertension and higher OPE metabolite concentrations had increased risk of kidney function impairment compared to those who did not have diabetes or hypertension. These findings suggest that specific OPE exposure may elevate the risk of renal injury, particularly among hypertensive and diabetic populations.
期刊介绍:
The International Journal of Hygiene and Environmental Health serves as a multidisciplinary forum for original reports on exposure assessment and the reactions to and consequences of human exposure to the biological, chemical, and physical environment. Research reports, short communications, reviews, scientific comments, technical notes, and editorials will be peer-reviewed before acceptance for publication. Priority will be given to articles on epidemiological aspects of environmental toxicology, health risk assessments, susceptible (sub) populations, sanitation and clean water, human biomonitoring, environmental medicine, and public health aspects of exposure-related outcomes.