Chuangde Zhang , Li Chen , Xin Sha , Qinjun Kang , Zhenxue Dai , Wen-Quan Tao
{"title":"Computational microfluidics of reactive transport processes with solid dissolution and self-induced multiphase flow","authors":"Chuangde Zhang , Li Chen , Xin Sha , Qinjun Kang , Zhenxue Dai , Wen-Quan Tao","doi":"10.1016/j.advwatres.2024.104771","DOIUrl":null,"url":null,"abstract":"<div><p>There are still many unclear mechanisms in the multiphase reactive flow with solid dissolution processes. In this study, the reactive transport processes coupled with solid dissolution and self-induced multiphase flow in three-dimensional (3D) structures with increasing complexity is studied by developing a 3D computational microfluidic method, which considers multiphase flow, interfacial mass transport, heterogeneous chemical reactions, and solid structure evolution. Solid dissolution diagram in a simple channel in the framework of multiphase flow is proposed, with six coupled multiphase flow and solid dissolution patterns identified and the transition between different patterns discussed. Then, multiphase reactive flow in a porous chip is further studied, and the interesting 3D phenomena are discovered, including enhanced solid dissolution in the middle and enriched bubble generation at the corner along the thickness direction. Considering the importance of reactive surface area, correlations of reactive surface area-porosity-saturation with different dissolution patterns are proposed based on the pore-scale results. Finally, the computational microfluidic model is extended to investigate the multiphase reactive flow in a 3D digital core. Different dissolution patterns are recognized using the local porosity evolution character, and the corresponding pore size distribution and bubble characteristics are deciphered. These findings advance understanding of multiphase reactive transport processes and contribute to improve continuum-scale reactive transport modeling.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"191 ","pages":"Article 104771"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170824001581","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
There are still many unclear mechanisms in the multiphase reactive flow with solid dissolution processes. In this study, the reactive transport processes coupled with solid dissolution and self-induced multiphase flow in three-dimensional (3D) structures with increasing complexity is studied by developing a 3D computational microfluidic method, which considers multiphase flow, interfacial mass transport, heterogeneous chemical reactions, and solid structure evolution. Solid dissolution diagram in a simple channel in the framework of multiphase flow is proposed, with six coupled multiphase flow and solid dissolution patterns identified and the transition between different patterns discussed. Then, multiphase reactive flow in a porous chip is further studied, and the interesting 3D phenomena are discovered, including enhanced solid dissolution in the middle and enriched bubble generation at the corner along the thickness direction. Considering the importance of reactive surface area, correlations of reactive surface area-porosity-saturation with different dissolution patterns are proposed based on the pore-scale results. Finally, the computational microfluidic model is extended to investigate the multiphase reactive flow in a 3D digital core. Different dissolution patterns are recognized using the local porosity evolution character, and the corresponding pore size distribution and bubble characteristics are deciphered. These findings advance understanding of multiphase reactive transport processes and contribute to improve continuum-scale reactive transport modeling.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes