Emmanuel K. Chemweno, Pradeep Kumar, Thomas J.O. Afullo
{"title":"Design and simulation of a metamaterial polarization-rotator wall for isolation improvement in SIW fed MIMO DRA for D-band applications","authors":"Emmanuel K. Chemweno, Pradeep Kumar, Thomas J.O. Afullo","doi":"10.1016/j.nancom.2024.100524","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, a metamaterial polarization-rotator (MTMPR) wall is proposed for mutual coupling reduction in a <span><math><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></math></span> multiple-input multiple-output (MIMO) antenna. A substrate integrated waveguide (SIW) based dielectric resonator antenna (DRA) is the preferred topology for the D-band frequency antenna design. The antenna elements are closely packed to achieve high antenna integration. The effect of the proposed isolation technique on the bandwidth performance and radiation characteristics of the antenna is investigated. Simulation results show that the proposed antenna exhibits a −10 dB impedance bandwidth of 19.5% (136.68 GHz–166.28 GHz), a gain of 11.06 dBi and a high efficiency of 84%. The antenna radiates in the broadside direction, with an isolation performance greater than 21.16 dB across the entire bandwidth of operation. Diversity metrics are also evaluated, indicating low correlation between the antenna elements and suitability of the proposed design for MIMO applications.</p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"41 ","pages":"Article 100524"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878778924000309/pdfft?md5=71a3ac5d34b11b1f536c1b46c9465733&pid=1-s2.0-S1878778924000309-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778924000309","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, a metamaterial polarization-rotator (MTMPR) wall is proposed for mutual coupling reduction in a multiple-input multiple-output (MIMO) antenna. A substrate integrated waveguide (SIW) based dielectric resonator antenna (DRA) is the preferred topology for the D-band frequency antenna design. The antenna elements are closely packed to achieve high antenna integration. The effect of the proposed isolation technique on the bandwidth performance and radiation characteristics of the antenna is investigated. Simulation results show that the proposed antenna exhibits a −10 dB impedance bandwidth of 19.5% (136.68 GHz–166.28 GHz), a gain of 11.06 dBi and a high efficiency of 84%. The antenna radiates in the broadside direction, with an isolation performance greater than 21.16 dB across the entire bandwidth of operation. Diversity metrics are also evaluated, indicating low correlation between the antenna elements and suitability of the proposed design for MIMO applications.
期刊介绍:
The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published.
Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.