{"title":"A new approach proposal for ensuring security engineering through barrier and operational quantitative risk analysis (BOQRA)","authors":"Mohamed Seddik Hellas , Rachid Chaib , Djamel Nettour , Hamza Zerrouki","doi":"10.1016/j.jlp.2024.105390","DOIUrl":null,"url":null,"abstract":"<div><p>The advancement in petrochemical industry has led to a significant increase in accidents, a concern that cannot overlooked if we aim to ensure the safety of our systems while still meeting production objectives. To address these phenomena, several techniques and models have been developed; the most important of them is Quantitative Risk Analysis (QRA). A QRA is a systematic approach that aims to estimate the likelihood and consequences of hazardous events. Despite its effectiveness, it faces limitations associated with uncertainty, relying on average values within the database. To overcome this limitation, Barrier and Operational Risk Analysis (BORA) is integrated with QRA, incorporating frequency analysis of consequences into the QRA methodology. This developed approach, termed Barrier and Operational Quantitative Risk Analysis (BOQRA), enables the correction of entered data in the database for calculating individual and revised societal risks while counting for human, technical, and organizational aspects. Additionally, it identifies essential measures to control risks and manage the impacts of modifications and configuration changes. The BOQRA sheds the light of the influence of Risk Influencing Factors (RIF) on barriers and their performance within an operational system. As an illustrative case study, we examined the flask ball for separating oil and gas based on density.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":"91 ","pages":"Article 105390"},"PeriodicalIF":3.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423024001487","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement in petrochemical industry has led to a significant increase in accidents, a concern that cannot overlooked if we aim to ensure the safety of our systems while still meeting production objectives. To address these phenomena, several techniques and models have been developed; the most important of them is Quantitative Risk Analysis (QRA). A QRA is a systematic approach that aims to estimate the likelihood and consequences of hazardous events. Despite its effectiveness, it faces limitations associated with uncertainty, relying on average values within the database. To overcome this limitation, Barrier and Operational Risk Analysis (BORA) is integrated with QRA, incorporating frequency analysis of consequences into the QRA methodology. This developed approach, termed Barrier and Operational Quantitative Risk Analysis (BOQRA), enables the correction of entered data in the database for calculating individual and revised societal risks while counting for human, technical, and organizational aspects. Additionally, it identifies essential measures to control risks and manage the impacts of modifications and configuration changes. The BOQRA sheds the light of the influence of Risk Influencing Factors (RIF) on barriers and their performance within an operational system. As an illustrative case study, we examined the flask ball for separating oil and gas based on density.
期刊介绍:
The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.