Exploring exponential time integration for strongly magnetized charged particle motion

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Physics Communications Pub Date : 2024-07-01 DOI:10.1016/j.cpc.2024.109294
{"title":"Exploring exponential time integration for strongly magnetized charged particle motion","authors":"","doi":"10.1016/j.cpc.2024.109294","DOIUrl":null,"url":null,"abstract":"<div><p>A fundamental task in particle-in-cell (PIC) simulations of plasma physics is solving for charged particle motion in electromagnetic fields. This problem is especially challenging when the plasma is strongly magnetized due to numerical stiffness arising from the wide separation in time scales between highly oscillatory gyromotion and overall macroscopic behavior of the system. In contrast to conventional finite difference schemes, we investigated exponential integration techniques to numerically simulate strongly magnetized charged particle motion. Numerical experiments with a uniform magnetic field show that exponential integrators yield superior performance for linear problems (i.e. configurations with an electric field given by a quadratic electric scalar potential) and are competitive with conventional methods for nonlinear problems with cubic and quartic electric scalar potentials.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010465524002170/pdfft?md5=9f3b8ea83c053b8ae7f64c41736e3c0d&pid=1-s2.0-S0010465524002170-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524002170","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A fundamental task in particle-in-cell (PIC) simulations of plasma physics is solving for charged particle motion in electromagnetic fields. This problem is especially challenging when the plasma is strongly magnetized due to numerical stiffness arising from the wide separation in time scales between highly oscillatory gyromotion and overall macroscopic behavior of the system. In contrast to conventional finite difference schemes, we investigated exponential integration techniques to numerically simulate strongly magnetized charged particle motion. Numerical experiments with a uniform magnetic field show that exponential integrators yield superior performance for linear problems (i.e. configurations with an electric field given by a quadratic electric scalar potential) and are competitive with conventional methods for nonlinear problems with cubic and quartic electric scalar potentials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索强磁化带电粒子运动的指数时间积分
等离子体物理的粒子在胞(PIC)模拟的一项基本任务是求解带电粒子在电磁场中的运动。当等离子体被强磁化时,由于高度振荡回旋运动与系统整体宏观行为之间的时间尺度相差很大,会产生数值刚度,因此这个问题尤其具有挑战性。与传统的有限差分方案不同,我们研究了指数积分技术来数值模拟强磁化带电粒子运动。均匀磁场的数值实验表明,指数积分器对于线性问题(即由二次电标量势给出的电场配置)具有卓越的性能,而对于具有三次和四次电标量势的非线性问题,指数积分器与传统方法相比具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
期刊最新文献
Computing the QRPA level density with the finite amplitude method An analysis and successful benchmarking of the Chapman-Enskog-like (CEL) continuum kinetic closure approach algorithm in NIMROD TROPIC: A program for calculating reduced transition probabilities ftint: Calculating gradient-flow integrals with pySecDec Analytic continuations and numerical evaluation of the Appell F1, F3, Lauricella FD(3) and Lauricella-Saran FS(3) and their application to Feynman integrals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1