{"title":"Hydrogeochemical processes, and health risk assessment of groundwater, in Santa María del rio aquifer: A case study of San Luis Potosí valley, Mexico","authors":"","doi":"10.1016/j.gsd.2024.101268","DOIUrl":null,"url":null,"abstract":"<div><p>The main objectives of this research were to the hydrogeochemical processes that control the groundwater chemistry, groundwater quality, and assessment of health risks of water. The drinking water that supplies the community of Santa María del Rio, S.L.P., comes from groundwater, in some municipality localities, groundwater Fluorine and arsenic are reported. Twenty-one representative groundwater samples were taken. Physicochemical parameters in situ: pH, OD, ORP, Alkalinity, STD, EC, Salinity, Total Coliforms, and E-coli, were analyzed, and in the laboratory, the heavy metals, metalloids and major constituents, cations: calcium, sodium, magnesium, and potassium, were determined by the ICP, and anions: chlorides, and sulfates, by colorimetry techniques. The results of the analyses were compared with the Mexican and EPA drinking water standards to verify their suitability and ensure that they do not exceed the permitted limit values. The results of the chemistry of the principal groundwater ions in the study area suggest that the main hydrogeochemical process that controls the variation of groundwater quality is the rock–water interaction. Groundwater has been classified into two hydrochemical facies, CaMgHCO<sub>3</sub> and NaHCO<sub>3</sub>, consistent with the type of rock. The samples with the CaMg–HCO<sub>3</sub> facie are associated with less evolved waters located in areas with local recharge. The dominant reactions in the aquifer are calcite, dolomite, and gypsum solutions. The presence of the N–NO<sub>3</sub><sup>-</sup> ion is associated with agricultural and urban zone influence, which indicates that this activity has impacted the water quality. The risk index (HI) results show that values > 0.1 < 1 of HI, for Pb present low chronic risks for adults and children. In contrast, HI values > 4 for both population groups represent high chronic risk. Excessive use of fertilizers should be controlled in the study area to prevent groundwater contamination by heavy metals and metalloids and be measured regularly to check drinking water quality.</p></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X24001917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The main objectives of this research were to the hydrogeochemical processes that control the groundwater chemistry, groundwater quality, and assessment of health risks of water. The drinking water that supplies the community of Santa María del Rio, S.L.P., comes from groundwater, in some municipality localities, groundwater Fluorine and arsenic are reported. Twenty-one representative groundwater samples were taken. Physicochemical parameters in situ: pH, OD, ORP, Alkalinity, STD, EC, Salinity, Total Coliforms, and E-coli, were analyzed, and in the laboratory, the heavy metals, metalloids and major constituents, cations: calcium, sodium, magnesium, and potassium, were determined by the ICP, and anions: chlorides, and sulfates, by colorimetry techniques. The results of the analyses were compared with the Mexican and EPA drinking water standards to verify their suitability and ensure that they do not exceed the permitted limit values. The results of the chemistry of the principal groundwater ions in the study area suggest that the main hydrogeochemical process that controls the variation of groundwater quality is the rock–water interaction. Groundwater has been classified into two hydrochemical facies, CaMgHCO3 and NaHCO3, consistent with the type of rock. The samples with the CaMg–HCO3 facie are associated with less evolved waters located in areas with local recharge. The dominant reactions in the aquifer are calcite, dolomite, and gypsum solutions. The presence of the N–NO3- ion is associated with agricultural and urban zone influence, which indicates that this activity has impacted the water quality. The risk index (HI) results show that values > 0.1 < 1 of HI, for Pb present low chronic risks for adults and children. In contrast, HI values > 4 for both population groups represent high chronic risk. Excessive use of fertilizers should be controlled in the study area to prevent groundwater contamination by heavy metals and metalloids and be measured regularly to check drinking water quality.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.