Simulation Conditions to Compute the Dispersion Diagram of 3D Periodic Structures

IF 6.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE journal of microwaves Pub Date : 2024-04-22 DOI:10.1109/JMW.2024.3384418
Hairu Wang;Oskar Zetterstrom;Pilar Castillo-Tapia;Francisco Mesa;Oscar Quevedo-Teruel
{"title":"Simulation Conditions to Compute the Dispersion Diagram of 3D Periodic Structures","authors":"Hairu Wang;Oskar Zetterstrom;Pilar Castillo-Tapia;Francisco Mesa;Oscar Quevedo-Teruel","doi":"10.1109/JMW.2024.3384418","DOIUrl":null,"url":null,"abstract":"In this work, we examine the methodology for numerically computing the dispersion diagram of three-dimensional periodic structures using commercial electromagnetic simulators. Examples of periodic structures based on body-centered cubic, face-centered cubic, and monoclinic lattices are used to illustrate this methodology. We first outline the characteristics of these structures in both physical and reciprocal spaces from a theoretical point of view. On this basis, we provide a comprehensive explanation of how to adjust the setting in simulation software commonly used in microwave engineering to generate the dispersion diagrams of these structures. The appropriate simulation conditions are tabulated to serve as a further guide for other researchers. This study also explores the influence of the elements of the unit cell on the dispersion characteristics. Additionally, we evaluate and contrast the dispersion properties of identical periodic elements when having simple cubic, body-centered cubic, and face-centered cubic arrangements. We found that symmetries, such as those seen in body-centered cubic and face-centered cubic arrangements, can improve the isotropy and maintain low-dispersion characteristics over a wider frequency range. The monoclinic structure is also taken as an example to demonstrate that the reported analysis method can be applied to the dispersion analysis of other more complex noncubic lattices. Our findings offer useful information for the examination and engineering of three-dimensional periodic structures, which can be used to design microwave and antenna devices.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"4 3","pages":"568-580"},"PeriodicalIF":6.9000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10506402","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of microwaves","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10506402/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we examine the methodology for numerically computing the dispersion diagram of three-dimensional periodic structures using commercial electromagnetic simulators. Examples of periodic structures based on body-centered cubic, face-centered cubic, and monoclinic lattices are used to illustrate this methodology. We first outline the characteristics of these structures in both physical and reciprocal spaces from a theoretical point of view. On this basis, we provide a comprehensive explanation of how to adjust the setting in simulation software commonly used in microwave engineering to generate the dispersion diagrams of these structures. The appropriate simulation conditions are tabulated to serve as a further guide for other researchers. This study also explores the influence of the elements of the unit cell on the dispersion characteristics. Additionally, we evaluate and contrast the dispersion properties of identical periodic elements when having simple cubic, body-centered cubic, and face-centered cubic arrangements. We found that symmetries, such as those seen in body-centered cubic and face-centered cubic arrangements, can improve the isotropy and maintain low-dispersion characteristics over a wider frequency range. The monoclinic structure is also taken as an example to demonstrate that the reported analysis method can be applied to the dispersion analysis of other more complex noncubic lattices. Our findings offer useful information for the examination and engineering of three-dimensional periodic structures, which can be used to design microwave and antenna devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算三维周期结构色散图的模拟条件
在这项工作中,我们研究了使用商用电磁模拟器数值计算三维周期结构色散图的方法。我们以基于体心立方、面心立方和单斜晶格的周期结构为例,来说明这种方法。我们首先从理论角度概述了这些结构在物理空间和倒易空间中的特点。在此基础上,我们全面解释了如何调整微波工程常用模拟软件的设置,以生成这些结构的频散图。我们将适当的仿真条件制成表格,为其他研究人员提供进一步指导。本研究还探讨了单元格元素对色散特性的影响。此外,我们还对具有简单立方、体心立方和面心立方排列的相同周期元素的色散特性进行了评估和对比。我们发现,对称性(如体心立方和面心立方排列中的对称性)可以改善各向同性,并在更宽的频率范围内保持低色散特性。我们还以单斜结构为例,说明所报告的分析方法可应用于其他更复杂的非立方晶格的色散分析。我们的研究结果为三维周期结构的研究和工程设计提供了有用的信息,可用于设计微波和天线设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Front Cover Table of Contents Introduction to the Fall 2024 Issue IEEE Microwave Theory and Technology Society Information Over-the-Air Phase Noise Spectral Density Measurement for FMCW Radar Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1