{"title":"Infusing Weighted Average Ensemble Diversity for Advanced Breast Cancer Detection","authors":"Barsha Abhisheka, Saroj Kumar Biswas, Biswajit Purkayastha","doi":"10.1002/ima.23146","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Breast cancer is a widespread health threat for women globally, often difficult to detect early due to its asymptomatic nature. As the disease advances, treatment becomes intricate and costly, ultimately resulting in elevated fatality rates. Currently, despite the widespread use of advanced machine learning (ML) and deep learning (DL) techniques, a comprehensive diagnosis of breast cancer remains elusive. Most of the existing methods primarily utilize either attention-based deep models or models based on handcrafted features to capture and gather local details. However, both of these approaches lack the capability to offer essential local information for precise tumor detection. Additionally, the available breast cancer datasets suffer from class imbalance issue. Hence, this paper presents a novel weighted average ensemble network (WA-ENet) designed for early-stage breast cancer detection that leverages the ability of ensemble technique over single classifier-based models for more robust and accurate prediction. The proposed model employs a weighted average-based ensemble technique, combining predictions from three diverse classifiers. The optimal combination of weights is determined using the hill climbing (HC) algorithm. Moreover, the proposed model enhances overall system performance by integrating deep features and handcrafted features through the use of HOG, thereby providing precise local information. Additionally, the proposed work addresses class imbalance by incorporating borderline synthetic minority over-sampling technique (BSMOTE). It achieves 99.65% accuracy on BUSI and 97.48% on UDIAT datasets.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23146","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is a widespread health threat for women globally, often difficult to detect early due to its asymptomatic nature. As the disease advances, treatment becomes intricate and costly, ultimately resulting in elevated fatality rates. Currently, despite the widespread use of advanced machine learning (ML) and deep learning (DL) techniques, a comprehensive diagnosis of breast cancer remains elusive. Most of the existing methods primarily utilize either attention-based deep models or models based on handcrafted features to capture and gather local details. However, both of these approaches lack the capability to offer essential local information for precise tumor detection. Additionally, the available breast cancer datasets suffer from class imbalance issue. Hence, this paper presents a novel weighted average ensemble network (WA-ENet) designed for early-stage breast cancer detection that leverages the ability of ensemble technique over single classifier-based models for more robust and accurate prediction. The proposed model employs a weighted average-based ensemble technique, combining predictions from three diverse classifiers. The optimal combination of weights is determined using the hill climbing (HC) algorithm. Moreover, the proposed model enhances overall system performance by integrating deep features and handcrafted features through the use of HOG, thereby providing precise local information. Additionally, the proposed work addresses class imbalance by incorporating borderline synthetic minority over-sampling technique (BSMOTE). It achieves 99.65% accuracy on BUSI and 97.48% on UDIAT datasets.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.