{"title":"Pancreatic Tumor Detection From CT Images Converted to Graphs Using Whale Optimization and Classification Algorithms With Transfer Learning","authors":"Yusuf Alaca, Ömer Faruk Akmeşe","doi":"10.1002/ima.70040","DOIUrl":null,"url":null,"abstract":"<p>Pancreatic cancer is one of the most aggressive types of cancer, known for its high mortality rate, as it is often diagnosed at an advanced stage. Early diagnosis holds the potential to prolong patients' lifespans and improve treatment success rates. In this study, an innovative method is proposed to enhance the diagnosis of pancreatic cancer. Computed tomography (CT) images were converted into graphs using the Harris Corner Detection Algorithm and analyzed using deep learning models via transfer learning. DenseNet121 and InceptionV3 transfer learning models were trained on graph-based data, and model parameters were optimized using the Whale Optimization Algorithm (WOA). Additionally, classification algorithms such as k-Nearest Neighbors (k-NN), Support Vector Machines (SVM), and Random Forests (RF) were integrated into the analysis of the extracted features. The best results were achieved using the k-NN classification algorithm on features optimized by WOA, yielding an accuracy of 92.10% and an F1 score of 92.74%. The study demonstrated that graph-based transformation enabled more effective modeling of spatial relationships, thereby enhancing the performance of deep learning models. WOA offered significant superiority compared to other methods in parameter optimization. This study aims to contribute to the development of a reliable diagnostic system that can be integrated into clinical applications. In the future, the use of larger and more diverse datasets, along with different graph-based methods, could enhance the generalizability and performance of the proposed approach. The proposed model has the potential to serve as a decision support tool for physicians, particularly in early diagnosis, offering an opportunity to improve patients' quality of life.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ima.70040","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70040","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic cancer is one of the most aggressive types of cancer, known for its high mortality rate, as it is often diagnosed at an advanced stage. Early diagnosis holds the potential to prolong patients' lifespans and improve treatment success rates. In this study, an innovative method is proposed to enhance the diagnosis of pancreatic cancer. Computed tomography (CT) images were converted into graphs using the Harris Corner Detection Algorithm and analyzed using deep learning models via transfer learning. DenseNet121 and InceptionV3 transfer learning models were trained on graph-based data, and model parameters were optimized using the Whale Optimization Algorithm (WOA). Additionally, classification algorithms such as k-Nearest Neighbors (k-NN), Support Vector Machines (SVM), and Random Forests (RF) were integrated into the analysis of the extracted features. The best results were achieved using the k-NN classification algorithm on features optimized by WOA, yielding an accuracy of 92.10% and an F1 score of 92.74%. The study demonstrated that graph-based transformation enabled more effective modeling of spatial relationships, thereby enhancing the performance of deep learning models. WOA offered significant superiority compared to other methods in parameter optimization. This study aims to contribute to the development of a reliable diagnostic system that can be integrated into clinical applications. In the future, the use of larger and more diverse datasets, along with different graph-based methods, could enhance the generalizability and performance of the proposed approach. The proposed model has the potential to serve as a decision support tool for physicians, particularly in early diagnosis, offering an opportunity to improve patients' quality of life.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.