Single-Molecule Functional Chips: Unveiling the Full Potential of Molecular Electronics and Optoelectronics

IF 14 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of materials research Pub Date : 2024-07-17 DOI:10.1021/accountsmr.4c00125
Heng Zhang, Junhao Li, Chen Yang, Xuefeng Guo
{"title":"Single-Molecule Functional Chips: Unveiling the Full Potential of Molecular Electronics and Optoelectronics","authors":"Heng Zhang, Junhao Li, Chen Yang, Xuefeng Guo","doi":"10.1021/accountsmr.4c00125","DOIUrl":null,"url":null,"abstract":"An ideal methodology for miniaturizing the physical size, enhancing the operational frequency, and building the multifunctional capability of functional chips is to use opto- or electroactive single molecules as their central elements; such devices are generally termed single-molecule electronics and optoelectronics. The exploration of the electronic and optoelectronic properties of materials at the single-molecule level also allows the complete elucidation of the correlation between molecular structure and function, which in turn aids technological advances that can help to address the challenge raised by Moore’s Law. In this Account, we present our ongoing investigative pursuits in the realm of single-molecule electronics and optoelectronics, with a particular emphasis on studies using graphene-molecule-graphene single-molecule junctions as the primary framework. To date, we have established a diverse range of single-molecule multifunctional devices, including photoswitches, field-effect transistors, rectifiers, light-emitting diodes, spin electronic devices, memristors, and molecular wires. These types of devices possess stable graphene electrodes and robust covalent molecule-electrode interfaces.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"6 1","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/accountsmr.4c00125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An ideal methodology for miniaturizing the physical size, enhancing the operational frequency, and building the multifunctional capability of functional chips is to use opto- or electroactive single molecules as their central elements; such devices are generally termed single-molecule electronics and optoelectronics. The exploration of the electronic and optoelectronic properties of materials at the single-molecule level also allows the complete elucidation of the correlation between molecular structure and function, which in turn aids technological advances that can help to address the challenge raised by Moore’s Law. In this Account, we present our ongoing investigative pursuits in the realm of single-molecule electronics and optoelectronics, with a particular emphasis on studies using graphene-molecule-graphene single-molecule junctions as the primary framework. To date, we have established a diverse range of single-molecule multifunctional devices, including photoswitches, field-effect transistors, rectifiers, light-emitting diodes, spin electronic devices, memristors, and molecular wires. These types of devices possess stable graphene electrodes and robust covalent molecule-electrode interfaces.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单分子功能芯片:揭示分子电子学和光电子学的全部潜力
利用具有光学或电学活性的单分子作为核心元件,是实现功能芯片物理尺寸微型化、提高工作频率和增强多功能能力的理想方法;这类器件通常被称为单分子电子学和光电子学。在单分子水平上探索材料的电子和光电特性,还可以全面阐明分子结构与功能之间的相关性,进而推动技术进步,帮助应对摩尔定律提出的挑战。在本报告中,我们将介绍我们在单分子电子学和光电子学领域正在进行的研究工作,尤其侧重于以石墨烯-分子-石墨烯单分子结为主要框架的研究。迄今为止,我们已经建立了多种单分子多功能器件,包括光开关、场效应晶体管、整流器、发光二极管、自旋电子器件、忆阻器和分子线。这些器件具有稳定的石墨烯电极和坚固的分子-电极共价界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.70
自引率
0.00%
发文量
0
期刊最新文献
Molecule-Based Crystalline Adsorbents: Advancing Adsorption Theory and Storage/Separation Applications Engineering Cellular Vesicles for Immunotherapy Machine Learning for Prediction and Synthesis of Anion Exchange Membranes Photoresponsive Coordination Polymer Single Crystal Platforms: Design and Applications Pore Engineering in Metal–Organic Frameworks for Enhanced Hydrocarbon Adsorption and Separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1