Engineering Cellular Vesicles for Immunotherapy

IF 14 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of materials research Pub Date : 2025-01-22 DOI:10.1021/accountsmr.4c00362
Xinyu Lin, Ludan Yue, Ke Cheng, Lang Rao
{"title":"Engineering Cellular Vesicles for Immunotherapy","authors":"Xinyu Lin, Ludan Yue, Ke Cheng, Lang Rao","doi":"10.1021/accountsmr.4c00362","DOIUrl":null,"url":null,"abstract":"Immunotherapy has become a crucial strategy for cancer and infectious diseases due to its ability to leverage the power of the immune system to combat diseases, particularly when conventional therapeutic options have been ineffective. Nonetheless, low immune response rates and immune-related adverse events (irAEs) remain significant challenges for immunotherapeutics. Therefore, there is an urgent need to develop new strategies for improving the immunotherapy. Extracellular vesicles (EVs), secreted by living cells, are small membrane-bound vesicles. Their size varies from 30 to 150 nm in diameter and can be found in various bodily fluids, including blood, tears, and breast milk. They have attracted extensive attention in immunotherapy due to their integral role in essential physiological and pathological processes. Despite their potential, EVs face limitations, including low productivity and high costs, hindering their clinical applications. These issues have recently been addressed with the advent of EV mimics. EV mimics are artificially produced nanoscale vesicles. Compared to EVs, they offer superior production efficiency while maintaining similar biological properties. EV mimics are obtained by physical methods from natural cells. Methods such as serial extrusion, sonication, and electroporation are now used to produce synthetic EV mimics, making them viable for immunotherapy applications. Building on this, we have developed various EV mimics from different cell sources for immunotherapy and engineering natural EVs and EV mimics using chemical and bioengineering strategies like biochemical conjugation, genetic engineering, and membrane hybridization. These engineered natural EVs and EV mimics have controllable immunomodulatory properties, capable of modulating (i.e., boosting or inhibiting) immunity for the treatment of cancer and infectious diseases.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"38 1","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/accountsmr.4c00362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Immunotherapy has become a crucial strategy for cancer and infectious diseases due to its ability to leverage the power of the immune system to combat diseases, particularly when conventional therapeutic options have been ineffective. Nonetheless, low immune response rates and immune-related adverse events (irAEs) remain significant challenges for immunotherapeutics. Therefore, there is an urgent need to develop new strategies for improving the immunotherapy. Extracellular vesicles (EVs), secreted by living cells, are small membrane-bound vesicles. Their size varies from 30 to 150 nm in diameter and can be found in various bodily fluids, including blood, tears, and breast milk. They have attracted extensive attention in immunotherapy due to their integral role in essential physiological and pathological processes. Despite their potential, EVs face limitations, including low productivity and high costs, hindering their clinical applications. These issues have recently been addressed with the advent of EV mimics. EV mimics are artificially produced nanoscale vesicles. Compared to EVs, they offer superior production efficiency while maintaining similar biological properties. EV mimics are obtained by physical methods from natural cells. Methods such as serial extrusion, sonication, and electroporation are now used to produce synthetic EV mimics, making them viable for immunotherapy applications. Building on this, we have developed various EV mimics from different cell sources for immunotherapy and engineering natural EVs and EV mimics using chemical and bioengineering strategies like biochemical conjugation, genetic engineering, and membrane hybridization. These engineered natural EVs and EV mimics have controllable immunomodulatory properties, capable of modulating (i.e., boosting or inhibiting) immunity for the treatment of cancer and infectious diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.70
自引率
0.00%
发文量
0
期刊最新文献
Engineering Cellular Vesicles for Immunotherapy Machine Learning for Prediction and Synthesis of Anion Exchange Membranes Photoresponsive Coordination Polymer Single Crystal Platforms: Design and Applications Pore Engineering in Metal–Organic Frameworks for Enhanced Hydrocarbon Adsorption and Separation Advanced Cathodes for Practical Lithium–Sulfur Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1