Yao Yao, Xin Bin, Yanxuan Xu, Shaowan Chen, Si Chen, Xiang-Ling Yuan, Yingjie Cao, Tsz Kin Ng
{"title":"Cellular senescence mediates retinal ganglion cell survival regulation post-optic nerve crush injury.","authors":"Yao Yao, Xin Bin, Yanxuan Xu, Shaowan Chen, Si Chen, Xiang-Ling Yuan, Yingjie Cao, Tsz Kin Ng","doi":"10.1111/cpr.13719","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic optic neuropathy refers to optic nerve (ON) injury by trauma, including explosion and traffic accident. Retinal ganglion cell (RGC) death is the critical pathological cause of irreversible visual impairment and blindness in ON injury. We previously investigated the patterns of 11 modes of cell death in mouse retina post-ON injury. Here we aimed to identify additional signalling pathways regulating RGC survival in rodents post-ON injury. RNA sequencing analysis identified the upregulation of inflammation and cellular senescence-related genes in retina post-ON injury, which were confirmed by immunoblotting and immunofluorescence analyses. Increased expression of senescence-associated β-galactosidase (SA-βgal) in RGCs and activation of microglia were also found. Transforming growth factor-β receptor type II inhibitor (LY2109761) treatment suppressed p15<sup>Ink4b</sup> and p21<sup>Cip1</sup> protein and SA-βgal expression and promoted RGC survival post-ON injury with decreasing the expression of cell death markers in retina. Consistently, senolytics (dasatinib and quercetin) treatments can promote RGC survival and alleviate the reduction of ganglion cell complex thickness and pattern electroretinography activity post-ON injury with reducing SA-βgal, p15<sup>Ink4b</sup>, p21<sup>Cip1</sup>, microglial activation and cell death marker expression. In summary, this study revealed the activation of cellular senescence in rodent retina post-ON injury and contribute to RGC survival regulation. Targeting cellular senescence can promote RGC survival after ON injury, suggesting a potential treatment strategy for traumatic optic neuropathy.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13719"},"PeriodicalIF":5.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.13719","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Traumatic optic neuropathy refers to optic nerve (ON) injury by trauma, including explosion and traffic accident. Retinal ganglion cell (RGC) death is the critical pathological cause of irreversible visual impairment and blindness in ON injury. We previously investigated the patterns of 11 modes of cell death in mouse retina post-ON injury. Here we aimed to identify additional signalling pathways regulating RGC survival in rodents post-ON injury. RNA sequencing analysis identified the upregulation of inflammation and cellular senescence-related genes in retina post-ON injury, which were confirmed by immunoblotting and immunofluorescence analyses. Increased expression of senescence-associated β-galactosidase (SA-βgal) in RGCs and activation of microglia were also found. Transforming growth factor-β receptor type II inhibitor (LY2109761) treatment suppressed p15Ink4b and p21Cip1 protein and SA-βgal expression and promoted RGC survival post-ON injury with decreasing the expression of cell death markers in retina. Consistently, senolytics (dasatinib and quercetin) treatments can promote RGC survival and alleviate the reduction of ganglion cell complex thickness and pattern electroretinography activity post-ON injury with reducing SA-βgal, p15Ink4b, p21Cip1, microglial activation and cell death marker expression. In summary, this study revealed the activation of cellular senescence in rodent retina post-ON injury and contribute to RGC survival regulation. Targeting cellular senescence can promote RGC survival after ON injury, suggesting a potential treatment strategy for traumatic optic neuropathy.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.