Yuhang Huang, Zhen Chen, Jiang Chen, Jingyue Liu, Cui Qiu, Qing Liu, Linqing Zhang, Guang-Jie Zhu, Xiaofeng Ma, Shuohao Sun, Yun Stone Shi, Guoqiang Wan
Degeneration of the cochlear spiral ganglion neurons (SGNs) is one of the major causes of sensorineural hearing loss and significantly impacts the outcomes of cochlear implantation. Functional regeneration of SGNs holds great promise for treating sensorineural hearing loss. In this study, we systematically screened 33 transcriptional regulators implicated in neuronal and SGN fate. Using gene expression array and principal component analyses, we identified a sequential combination of Ascl1, Pou4f1 and Myt1l (APM) in promoting functional reprogramming of SGNs. The neurons induced by APM expressed mature neuronal and SGN lineage-specific markers, displayed mature SGN-like electrophysiological characteristics and exhibited single-cell transcriptomes resembling the endogenous SGNs. Thus, transcription factors APM may serve as novel candidates for direct reprogramming of SGNs and hearing recovery due to SGN damages.
{"title":"Direct reprogramming of fibroblasts into spiral ganglion neurons by defined transcription factors.","authors":"Yuhang Huang, Zhen Chen, Jiang Chen, Jingyue Liu, Cui Qiu, Qing Liu, Linqing Zhang, Guang-Jie Zhu, Xiaofeng Ma, Shuohao Sun, Yun Stone Shi, Guoqiang Wan","doi":"10.1111/cpr.13775","DOIUrl":"https://doi.org/10.1111/cpr.13775","url":null,"abstract":"<p><p>Degeneration of the cochlear spiral ganglion neurons (SGNs) is one of the major causes of sensorineural hearing loss and significantly impacts the outcomes of cochlear implantation. Functional regeneration of SGNs holds great promise for treating sensorineural hearing loss. In this study, we systematically screened 33 transcriptional regulators implicated in neuronal and SGN fate. Using gene expression array and principal component analyses, we identified a sequential combination of Ascl1, Pou4f1 and Myt1l (APM) in promoting functional reprogramming of SGNs. The neurons induced by APM expressed mature neuronal and SGN lineage-specific markers, displayed mature SGN-like electrophysiological characteristics and exhibited single-cell transcriptomes resembling the endogenous SGNs. Thus, transcription factors APM may serve as novel candidates for direct reprogramming of SGNs and hearing recovery due to SGN damages.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13775"},"PeriodicalIF":5.9,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shilpa Kuttikrishnan, Abdul W Ansari, Muhammad Suleman, Fareed Ahmad, Kirti S Prabhu, Tamam El-Elimat, Feras Q Alali, Ammira S Al Shabeeb Akil, Ajaz A Bhat, Maysaloun Merhi, Said Dermime, Martin Steinhoff, Shahab Uddin
The phosphatidylinositol 3-kinase/Protein Kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signalling pathway is pivotal in various cancers, including T-cell acute lymphoblastic leukaemia (T-ALL), a particularly aggressive type of leukaemia. This study investigates the effects of Neosetophomone B (NSP-B), a meroterpenoid fungal metabolite, on T-ALL cell lines, focusing on its anti-cancer mechanisms and therapeutic potential. NSP-B significantly inhibited the proliferation of T-ALL cells by inducing G0/G1 cell cycle arrest and promoting caspase-dependent apoptosis. Additionally, NSP-B led to the dephosphorylation and subsequent inactivation of the PI3K/AKT/mTOR signalling pathway, a critical pathway in cell survival and growth. Molecular docking studies revealed a strong binding affinity of NSP-B to the active site of AKT, primarily involving key residues crucial for its activity. Interestingly, NSP-B treatment also induced apoptosis and significantly reduced proliferation in phytohemagglutinin-activated primary human CD3+ T cells, accompanied by a G0/G1 cell cycle arrest. Importantly, NSP-B did not affect normal primary T cells, indicating a degree of selectivity in its action, targeting only T-ALL cells and activated T cells. In conclusion, our findings highlight the potential of NSP-B as a novel therapeutic agent for T-ALL, specifically targeting the aberrantly activated PI3K/AKT/mTOR pathway and being selective in action. These results provide a strong basis for further investigation into NSP-B's anti-cancer properties and potential application in T-ALL clinical therapies.
磷脂酰肌醇 3- 激酶/蛋白激酶 B/雷帕霉素哺乳动物靶标(PI3K/AKT/mTOR)信号通路在多种癌症中起着关键作用,包括 T 细胞急性淋巴细胞白血病(T-ALL),这是一种侵袭性特别强的白血病类型。本研究调查了一种经萜类真菌代谢物 Neosetophomone B(NSP-B)对 T-ALL 细胞系的影响,重点研究其抗癌机制和治疗潜力。NSP-B通过诱导G0/G1细胞周期停滞和促进卡巴酶依赖性凋亡,明显抑制了T-ALL细胞的增殖。此外,NSP-B 还能导致 PI3K/AKT/mTOR 信号通路的去磷酸化和随后的失活,而 PI3K/AKT/mTOR 信号通路是细胞存活和生长的关键通路。分子对接研究显示,NSP-B 与 AKT 的活性位点有很强的结合亲和力,主要涉及对其活性至关重要的关键残基。有趣的是,NSP-B 还能诱导植物血凝素激活的原代人类 CD3+ T 细胞凋亡,并显著减少其增殖,同时使细胞周期停滞在 G0/G1。重要的是,NSP-B 不影响正常的原代 T 细胞,这表明其作用具有一定程度的选择性,只针对 T-ALL 细胞和活化的 T 细胞。总之,我们的研究结果凸显了 NSP-B 作为 T-ALL 新型治疗药物的潜力,它专门针对异常激活的 PI3K/AKT/mTOR 通路,并具有选择性作用。这些结果为进一步研究 NSP-B 的抗癌特性和在 T-ALL 临床疗法中的潜在应用奠定了坚实的基础。
{"title":"The apoptotic and anti-proliferative effects of Neosetophomone B in T-cell acute lymphoblastic leukaemia via PI3K/AKT/mTOR pathway inhibition.","authors":"Shilpa Kuttikrishnan, Abdul W Ansari, Muhammad Suleman, Fareed Ahmad, Kirti S Prabhu, Tamam El-Elimat, Feras Q Alali, Ammira S Al Shabeeb Akil, Ajaz A Bhat, Maysaloun Merhi, Said Dermime, Martin Steinhoff, Shahab Uddin","doi":"10.1111/cpr.13773","DOIUrl":"10.1111/cpr.13773","url":null,"abstract":"<p><p>The phosphatidylinositol 3-kinase/Protein Kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signalling pathway is pivotal in various cancers, including T-cell acute lymphoblastic leukaemia (T-ALL), a particularly aggressive type of leukaemia. This study investigates the effects of Neosetophomone B (NSP-B), a meroterpenoid fungal metabolite, on T-ALL cell lines, focusing on its anti-cancer mechanisms and therapeutic potential. NSP-B significantly inhibited the proliferation of T-ALL cells by inducing G0/G1 cell cycle arrest and promoting caspase-dependent apoptosis. Additionally, NSP-B led to the dephosphorylation and subsequent inactivation of the PI3K/AKT/mTOR signalling pathway, a critical pathway in cell survival and growth. Molecular docking studies revealed a strong binding affinity of NSP-B to the active site of AKT, primarily involving key residues crucial for its activity. Interestingly, NSP-B treatment also induced apoptosis and significantly reduced proliferation in phytohemagglutinin-activated primary human CD3<sup>+</sup> T cells, accompanied by a G0/G1 cell cycle arrest. Importantly, NSP-B did not affect normal primary T cells, indicating a degree of selectivity in its action, targeting only T-ALL cells and activated T cells. In conclusion, our findings highlight the potential of NSP-B as a novel therapeutic agent for T-ALL, specifically targeting the aberrantly activated PI3K/AKT/mTOR pathway and being selective in action. These results provide a strong basis for further investigation into NSP-B's anti-cancer properties and potential application in T-ALL clinical therapies.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13773"},"PeriodicalIF":5.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As crucial phagocytes of the innate immune system, macrophages (Mϕs) protect mammalian hosts, maintain tissue homeostasis and influence disease pathogenesis. Nonetheless, Mϕs are susceptible to various pathogens, including bacteria, viruses and parasites, which cause various infectious diseases, necessitating a deeper understanding of pathogen-Mϕ interactions and therapeutic insights. Pluripotent stem cells (PSCs) have been efficiently differentiated into PSC-derived Mϕs (PSCdMϕs) resembling primary Mϕs, advancing the modelling and cell therapy of infectious diseases. However, the mass production of PSCdMϕs, which lack proliferative capacity, relies on large-scale expansions of PSCs, thereby increasing both costs and culture cycles. Notably, Mϕs deficient in the MafB/c-Maf genes have been reported to re-enter the cell cycle with the stimulation of specific growth factor cocktails, turning into self-renewing Mϕs (SRMϕs). This review summarizes the applications of PSCdMϕs in the modelling and cell therapy of infectious diseases and strategies for establishing SRMϕs. Most importantly, we innovatively propose that PSCs can serve as a gene editing platform to creating PSC-derived SRMϕs (termed PSRMϕs), addressing the resistance of Mϕs against genetic manipulation. We discuss the challenges and possible solutions in creating PSRMϕs. In conclusion, this review provides novel insights into the development of physiologically relevant and expandable Mϕ models, highlighting the enormous potential of PSRMϕs as a promising avenue for the modelling and cell therapy of infectious diseases.
{"title":"Synergy between pluripotent stem cell-derived macrophages and self-renewing macrophages: Envisioning a promising avenue for the modelling and cell therapy of infectious diseases.","authors":"Dingkun Peng, Meilin Li, Zhuoran Yu, Tingsheng Yan, Meng Yao, Su Li, Zhonghua Liu, Lian-Feng Li, Hua-Ji Qiu","doi":"10.1111/cpr.13770","DOIUrl":"https://doi.org/10.1111/cpr.13770","url":null,"abstract":"<p><p>As crucial phagocytes of the innate immune system, macrophages (Mϕs) protect mammalian hosts, maintain tissue homeostasis and influence disease pathogenesis. Nonetheless, Mϕs are susceptible to various pathogens, including bacteria, viruses and parasites, which cause various infectious diseases, necessitating a deeper understanding of pathogen-Mϕ interactions and therapeutic insights. Pluripotent stem cells (PSCs) have been efficiently differentiated into PSC-derived Mϕs (PSCdMϕs) resembling primary Mϕs, advancing the modelling and cell therapy of infectious diseases. However, the mass production of PSCdMϕs, which lack proliferative capacity, relies on large-scale expansions of PSCs, thereby increasing both costs and culture cycles. Notably, Mϕs deficient in the MafB/c-Maf genes have been reported to re-enter the cell cycle with the stimulation of specific growth factor cocktails, turning into self-renewing Mϕs (SRMϕs). This review summarizes the applications of PSCdMϕs in the modelling and cell therapy of infectious diseases and strategies for establishing SRMϕs. Most importantly, we innovatively propose that PSCs can serve as a gene editing platform to creating PSC-derived SRMϕs (termed PSRMϕs), addressing the resistance of Mϕs against genetic manipulation. We discuss the challenges and possible solutions in creating PSRMϕs. In conclusion, this review provides novel insights into the development of physiologically relevant and expandable Mϕ models, highlighting the enormous potential of PSRMϕs as a promising avenue for the modelling and cell therapy of infectious diseases.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13770"},"PeriodicalIF":5.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonathan Nissenbaum, Emanuel Segal, Hagit Philip, Rivki Cashman, Tamar Golan-Lev, Benjamin E Reubinoff, Adi Turjeman, Ofra Yanuka, Elyad Lezmi, Oded Kopper, Nissim Benvenisty
Taxanes and platinum molecules, specifically paclitaxel and carboplatin, are widely used anticancer drugs that induce cell death and serve as first-line chemotherapy for various cancer types. Despite the efficient effect of both drugs on cancer cell proliferation, many tumours have innate resistance against paclitaxel and carboplatin, which leads to inefficient treatment and poor survival rates. Haploid human embryonic stem cells (hESCs) are a novel and robust platform for genetic screening. To gain a comprehensive view of genes that affect or regulate paclitaxel and carboplatin resistance, genome-wide loss-of-function screens in haploid hESCs were performed. Both paclitaxel and carboplatin screens have yielded selected plausible gene lists and pathways relevant to resistance prediction. The effects of mutations in selected genes on the resistance to the drugs were demonstrated. Based on the results, an algorithm that can predict resistance to paclitaxel or carboplatin was developed. Applying the algorithm to the DNA mutation profile of patients' tumours enabled the separation of sensitive versus resistant patients, thus, providing a prediction tool. As the anticancer drugs arsenal can offer alternatives in case of resistance to either paclitaxel or carboplatin, an early prediction can provide a significant advantage and should improve treatment. The algorithm assists this unmet need and helps predict whether a patient will respond to the treatment and may have an immediate clinically actionable application.
{"title":"Predicting tumour resistance to paclitaxel and carboplatin utilising genome-wide screening in haploid human embryonic stem cells.","authors":"Jonathan Nissenbaum, Emanuel Segal, Hagit Philip, Rivki Cashman, Tamar Golan-Lev, Benjamin E Reubinoff, Adi Turjeman, Ofra Yanuka, Elyad Lezmi, Oded Kopper, Nissim Benvenisty","doi":"10.1111/cpr.13771","DOIUrl":"https://doi.org/10.1111/cpr.13771","url":null,"abstract":"<p><p>Taxanes and platinum molecules, specifically paclitaxel and carboplatin, are widely used anticancer drugs that induce cell death and serve as first-line chemotherapy for various cancer types. Despite the efficient effect of both drugs on cancer cell proliferation, many tumours have innate resistance against paclitaxel and carboplatin, which leads to inefficient treatment and poor survival rates. Haploid human embryonic stem cells (hESCs) are a novel and robust platform for genetic screening. To gain a comprehensive view of genes that affect or regulate paclitaxel and carboplatin resistance, genome-wide loss-of-function screens in haploid hESCs were performed. Both paclitaxel and carboplatin screens have yielded selected plausible gene lists and pathways relevant to resistance prediction. The effects of mutations in selected genes on the resistance to the drugs were demonstrated. Based on the results, an algorithm that can predict resistance to paclitaxel or carboplatin was developed. Applying the algorithm to the DNA mutation profile of patients' tumours enabled the separation of sensitive versus resistant patients, thus, providing a prediction tool. As the anticancer drugs arsenal can offer alternatives in case of resistance to either paclitaxel or carboplatin, an early prediction can provide a significant advantage and should improve treatment. The algorithm assists this unmet need and helps predict whether a patient will respond to the treatment and may have an immediate clinically actionable application.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13771"},"PeriodicalIF":5.9,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuwen Luo, Jun Li, Lv Zheng, Yizaitiguli Reyimjan, Yan Ma, Shuaixiang Huang, Hongyu Liu, Guizhen Zhou, Jiachen Bai, Yixiao Zhu, Yidan Sun, Xinhua Zou, Yunpeng Hou, Xiangwei Fu
The cover image is based on the article Procyanidin B2 improves developmental capacity of bovine oocytes via promoting PPARγ/UCP1-mediated uncoupling lipid catabolism during in vitro maturation by Yuwen Luo et al., https://doi.org/10.1111/cpr.13687.