{"title":"Surface Gold Atoms Determine Peroxidase Mimic Activity in Gold Alloy Nanoparticles","authors":"Giulia Maria Spataro, Jijin Yang, Vito Coviello, Stefano Agnoli, Vincenzo Amendola","doi":"10.1002/cphc.202400486","DOIUrl":null,"url":null,"abstract":"<p>The development of peroxidase mimic nanocatalysts is relevant for oxidation reactions in biosensing, environmental monitoring and green chemical processes. Several nanomaterials have been proposed as peroxidase mimic, the majority of which consists of noble metals and oxide nanoparticles (NPs). Yet, there is still limited information about how the change in the composition influences their catalytic activity. Here, the peroxidase mimic behaviour of gold NPs is compared to a traditional nanoalloy as Au−Ag and to the Au−Fe and the Au−Co nanoalloys, which were not tested before as oxidation catalysts. Since the alloys of gold with iron and cobalt are thermodynamically unstable, laser ablation in liquid (LAL) is exploited for the synthesis of these NPs. Using LAL, no chemical stabilizers or capping agents are present on the NPs surface, allowing the evaluation of the oxidation behaviour as a function of the alloy composition. The results point to the importance of surface gold atoms in the catalytic process, but also indicate the possibility of obtaining active nanocatalysts with a lower content of Au by alloying it with iron, which is earth-abundant, non-toxic and low cost. Overall, Au nanoalloys are worth consideration as a more sustainable alternative to pure Au nanocatalysts for oxidation reactions.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":"25 22","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cphc.202400486","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cphc.202400486","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of peroxidase mimic nanocatalysts is relevant for oxidation reactions in biosensing, environmental monitoring and green chemical processes. Several nanomaterials have been proposed as peroxidase mimic, the majority of which consists of noble metals and oxide nanoparticles (NPs). Yet, there is still limited information about how the change in the composition influences their catalytic activity. Here, the peroxidase mimic behaviour of gold NPs is compared to a traditional nanoalloy as Au−Ag and to the Au−Fe and the Au−Co nanoalloys, which were not tested before as oxidation catalysts. Since the alloys of gold with iron and cobalt are thermodynamically unstable, laser ablation in liquid (LAL) is exploited for the synthesis of these NPs. Using LAL, no chemical stabilizers or capping agents are present on the NPs surface, allowing the evaluation of the oxidation behaviour as a function of the alloy composition. The results point to the importance of surface gold atoms in the catalytic process, but also indicate the possibility of obtaining active nanocatalysts with a lower content of Au by alloying it with iron, which is earth-abundant, non-toxic and low cost. Overall, Au nanoalloys are worth consideration as a more sustainable alternative to pure Au nanocatalysts for oxidation reactions.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.