{"title":"Advancements in Scaling Up Perovskite Solar Cells: From Small-Area Devices to Large-Scale Modules.","authors":"Zhenyu Hu, Zijie Wang, Peng Gao","doi":"10.1002/cphc.202400587","DOIUrl":null,"url":null,"abstract":"<p><p>The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has exceeded those of conventional thin-film solar cell technologies, and the speed at which this increase has been achieved is unprecedented in the history of photovoltaics. Despite the significant progress achieved by PSCs at the laboratory level, their commercial prospects still face two significant challenges: scaling up in size and ensuring long-term stability. Small-area devices (~1 cm<sup>2</sup>) are typically fabricated using spin-coating. However, this approach may not be suitable for preparing the large-area (>100 cm<sup>2</sup>) substrates required for commercialization. Thus, new materials and methods must be developed to facilitate the coating of large-area PSCs. This review will discuss the development of scaling up organic-inorganic hybrid PSCs and the challenges of increasing the device area. Furthermore, it will provide an overview of the methodologies for achieving high-efficiency perovskite solar modules.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400587"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400587","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has exceeded those of conventional thin-film solar cell technologies, and the speed at which this increase has been achieved is unprecedented in the history of photovoltaics. Despite the significant progress achieved by PSCs at the laboratory level, their commercial prospects still face two significant challenges: scaling up in size and ensuring long-term stability. Small-area devices (~1 cm2) are typically fabricated using spin-coating. However, this approach may not be suitable for preparing the large-area (>100 cm2) substrates required for commercialization. Thus, new materials and methods must be developed to facilitate the coating of large-area PSCs. This review will discuss the development of scaling up organic-inorganic hybrid PSCs and the challenges of increasing the device area. Furthermore, it will provide an overview of the methodologies for achieving high-efficiency perovskite solar modules.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.