Cutting-edge Advances in Nanocarrier-Facilitated Topical Drug Delivery Systems for Targeted Skin Cancer Therapy: A Comprehensive Review.

IF 2.2 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Current pharmaceutical biotechnology Pub Date : 2024-07-15 DOI:10.2174/0113892010312939240704141630
Bindu Kumari Yadav, Riya Patel, Bhupendra Prajapati, Gayatri Patel
{"title":"Cutting-edge Advances in Nanocarrier-Facilitated Topical Drug Delivery Systems for Targeted Skin Cancer Therapy: A Comprehensive Review.","authors":"Bindu Kumari Yadav, Riya Patel, Bhupendra Prajapati, Gayatri Patel","doi":"10.2174/0113892010312939240704141630","DOIUrl":null,"url":null,"abstract":"<p><p>Skin cancer is one of the most common and complex types of the disease, resulting in a high mortality rate worldwide. Skin cancer can be treated with chemotherapy, surgery, radiotherapy, etc. In most cases, a patient's condition and the type of skin cancer determine the recommended treatment options. As a result of poor penetration of the drug into stratum corneum or lesions, low efficacy, and higher concentrations of active pharmaceutical ingredients required to achieve a therapeutic effect, the efficacy of skin cancer therapy has been limited. The high dose requirement, as well as poor bioavailability at the site of action, causes skin inflammation, which greatly hinders drug absorption. This review mainly focuses on research on nanocarriers for sitespecific and controlled delivery of therapeutics for skin cancer treatment. The information related to various nanocarriers systems for skin cancer will be illustrated. This also focused on patents, clinical trials, and research carried out in the field of liposomes, niosomes, ethosomes, nanoparticles, microemulsion, nanoemulsions, gels, nanogels, hydrogels, dendrimers, and nanofibers for treating skin cancer. Nanotechnology-based therapy has shown great promise in controlling skin cancer and can be used to deliver drugs more effectively.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010312939240704141630","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Skin cancer is one of the most common and complex types of the disease, resulting in a high mortality rate worldwide. Skin cancer can be treated with chemotherapy, surgery, radiotherapy, etc. In most cases, a patient's condition and the type of skin cancer determine the recommended treatment options. As a result of poor penetration of the drug into stratum corneum or lesions, low efficacy, and higher concentrations of active pharmaceutical ingredients required to achieve a therapeutic effect, the efficacy of skin cancer therapy has been limited. The high dose requirement, as well as poor bioavailability at the site of action, causes skin inflammation, which greatly hinders drug absorption. This review mainly focuses on research on nanocarriers for sitespecific and controlled delivery of therapeutics for skin cancer treatment. The information related to various nanocarriers systems for skin cancer will be illustrated. This also focused on patents, clinical trials, and research carried out in the field of liposomes, niosomes, ethosomes, nanoparticles, microemulsion, nanoemulsions, gels, nanogels, hydrogels, dendrimers, and nanofibers for treating skin cancer. Nanotechnology-based therapy has shown great promise in controlling skin cancer and can be used to deliver drugs more effectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于皮肤癌靶向治疗的纳米载体促进局部给药系统的前沿进展:全面回顾。
皮肤癌是最常见、最复杂的疾病之一,在全球范围内死亡率很高。皮肤癌的治疗方法有化疗、手术、放疗等。在大多数情况下,病人的病情和皮肤癌的类型决定了推荐的治疗方案。由于药物在角质层或病变部位的渗透性差、疗效低,以及达到治疗效果所需的活性药物成分浓度较高,皮肤癌治疗的疗效一直受到限制。高剂量要求以及作用部位的生物利用率低会导致皮肤炎症,从而大大阻碍药物的吸收。本综述主要关注纳米载体在皮肤癌治疗中用于治疗药物的定点和可控递送的研究。本综述将说明与治疗皮肤癌的各种纳米载体系统有关的信息。此外,还重点介绍了用于治疗皮肤癌的脂质体、niosomes、ethosomes、纳米粒子、微乳液、纳米乳液、凝胶、纳米凝胶、水凝胶、树枝状分子和纳米纤维的专利、临床试验和研究情况。基于纳米技术的疗法在控制皮肤癌方面前景广阔,可用于更有效地给药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current pharmaceutical biotechnology
Current pharmaceutical biotechnology 医学-生化与分子生物学
CiteScore
5.60
自引率
3.60%
发文量
203
审稿时长
6 months
期刊介绍: Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include: DNA/protein engineering and processing Synthetic biotechnology Omics (genomics, proteomics, metabolomics and systems biology) Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes) Drug delivery and targeting Nanobiotechnology Molecular pharmaceutics and molecular pharmacology Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes) Pharmacokinetics and pharmacodynamics Applied Microbiology Bioinformatics (computational biopharmaceutics and modeling) Environmental biotechnology Regenerative medicine (stem cells, tissue engineering and biomaterials) Translational immunology (cell therapies, antibody engineering, xenotransplantation) Industrial bioprocesses for drug production and development Biosafety Biotech ethics Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
期刊最新文献
Biodistribution and Tumor Targeted Accumulation of Anti-CEA-loaded Iron Nanoparticles. The Emerging Roles of CircPVT1 in Cancer Progression. Intestinal Epithelial Cell-specific Knockout of METTL3 Aggravates Intestinal Inflammation in CLP Mice by Weakening the Intestinal Barrier. Noncoding RNA Lipotherapeutics: A Promising Breakthrough in Pulmonary Hypertension Treatment. LncRNA LINC00466 Promotes the Progression of Breast Cancer via miR-4731-5p/EPHA2 Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1