Metabolic disruptions in Biomphalaria glabrata induced by Heterorhabditis bacteriophora HP88: Implications for entomopathogenic nematodes in biological control
Victor Menezes Tunholi , Ludimila Santos Amaral , Natânia do Carmo Sperandio , Lorena Souza Castro Altoé , Vinícius Menezes Tunholi-Alves , Juberlan Garcia , Ester Maria Mota , Melissa Carvalho Machado do Couto-Chambarelli , Caio Márcio de Oliveira Monteiro , Isabella Vilhena Freire Martins
{"title":"Metabolic disruptions in Biomphalaria glabrata induced by Heterorhabditis bacteriophora HP88: Implications for entomopathogenic nematodes in biological control","authors":"Victor Menezes Tunholi , Ludimila Santos Amaral , Natânia do Carmo Sperandio , Lorena Souza Castro Altoé , Vinícius Menezes Tunholi-Alves , Juberlan Garcia , Ester Maria Mota , Melissa Carvalho Machado do Couto-Chambarelli , Caio Márcio de Oliveira Monteiro , Isabella Vilhena Freire Martins","doi":"10.1016/j.exppara.2024.108804","DOIUrl":null,"url":null,"abstract":"<div><p>Research on the use of entomopathogenic nematodes (EPNs) as a potential tool for the biological control of invertebrates has been growing in recent years, including studies involving snails with One Health importance. In this study, the effect of exposure time (24 or 48 h) of <em>Heterorhabditis bacteriophora</em> HP88 on the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), as well as the concentration of total proteins, uric acid, and urea in the hemolymph of <em>Biomphalaria glabrata</em>, were investigated. The concentrations of these metabolic markers were measured weekly until the end of the third week after exposure. Along with a significant reduction in total protein levels, a significant increase (p < 0.01) in uric acid and urea contents in the hemolymph of <em>B. glabrata</em> exposed to <em>H. bacteriophora</em> was observed. The accumulation of urea in these mollusks could lead to deleterious effects due to its high toxicity, inducing significant cell damage. Variations in transaminase activities were also observed, with snails exposed to EPNs showing significantly higher values (p < 0.01) than individuals in the control group, both for ALT and AST. These results indicate that experimental exposure to infective juveniles of <em>H. bacteriophora</em> causes significant alterations in the metabolic pattern of <em>B. glabrata</em>, compromising the maintenance of its homeostasis. Finally, exposure for 48 h caused more damage to the planorbid in question compared to snails exposed for 24 h, suggesting that the exposure time may influence the intensity of the host's response.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014489424001073","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Research on the use of entomopathogenic nematodes (EPNs) as a potential tool for the biological control of invertebrates has been growing in recent years, including studies involving snails with One Health importance. In this study, the effect of exposure time (24 or 48 h) of Heterorhabditis bacteriophora HP88 on the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), as well as the concentration of total proteins, uric acid, and urea in the hemolymph of Biomphalaria glabrata, were investigated. The concentrations of these metabolic markers were measured weekly until the end of the third week after exposure. Along with a significant reduction in total protein levels, a significant increase (p < 0.01) in uric acid and urea contents in the hemolymph of B. glabrata exposed to H. bacteriophora was observed. The accumulation of urea in these mollusks could lead to deleterious effects due to its high toxicity, inducing significant cell damage. Variations in transaminase activities were also observed, with snails exposed to EPNs showing significantly higher values (p < 0.01) than individuals in the control group, both for ALT and AST. These results indicate that experimental exposure to infective juveniles of H. bacteriophora causes significant alterations in the metabolic pattern of B. glabrata, compromising the maintenance of its homeostasis. Finally, exposure for 48 h caused more damage to the planorbid in question compared to snails exposed for 24 h, suggesting that the exposure time may influence the intensity of the host's response.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.