{"title":"Dancing with danger-how honeybees are getting affected in the web of microplastics-a review","authors":"Sadaf Bashir , Pritha Ghosh , Priyanka Lal","doi":"10.1016/j.impact.2024.100522","DOIUrl":null,"url":null,"abstract":"<div><p>Anthropogenic activities have negatively impacted the ecosystem dramatically over the last few decades. The environment is becoming more contaminated with heavy metals, pesticides, and microplastics (MPs) as a result of the swift rise in industrialization and urbanisation. These contaminants are present everywhere in the ecosystem, affecting every living creature, from aquatic to terrestrial to aerial. Recently, the widespread of microplastics in the environment has raised serious concerns about the contamination of honey bees by these tiny particles of plastic. Honeybees are the major pollinators which contributes in the pollination of about 70% food that we consume. This review summarizes current research findings on the presence, uptake, and possible effects of microplastics on honey bees. Findings revealed the presence of microplastics in various honey bee matrices, such as honey, pollen, beeswax, and bee bodies, highlighting the potential routes of exposure for these vital pollinators. Additionally, evidence suggests that microplastics can accumulate in honey bee tissues (brain, midgut, Malpighian tubules, trachea, and haemolymph) potentially leading to adverse effects on honey bee health, behaviour, and colony dynamics. Additionally, MPs has a synergistic impact on immune system as well. Change in cuticle profile, reduction in body weight, and changes in eating frequency can regulate overall success rate of their survival. However, significant knowledge gaps remain regarding the long-term consequences for honey bee populations and ecosystem health, which cannot unveil the ultimate degree of future threats. Future research efforts should focus on investigating the interactions between microplastics and other stressors, such as pesticides and pathogens, and assessing the broader ecological implications of honey bee contamination with microplastics. Addressing these knowledge gaps is essential for developing effective mitigation strategies to minimize the impact of microplastics on honey bee populations and safeguarding their vital role in ecosystem functioning and food security.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"35 ","pages":"Article 100522"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074824000326","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Anthropogenic activities have negatively impacted the ecosystem dramatically over the last few decades. The environment is becoming more contaminated with heavy metals, pesticides, and microplastics (MPs) as a result of the swift rise in industrialization and urbanisation. These contaminants are present everywhere in the ecosystem, affecting every living creature, from aquatic to terrestrial to aerial. Recently, the widespread of microplastics in the environment has raised serious concerns about the contamination of honey bees by these tiny particles of plastic. Honeybees are the major pollinators which contributes in the pollination of about 70% food that we consume. This review summarizes current research findings on the presence, uptake, and possible effects of microplastics on honey bees. Findings revealed the presence of microplastics in various honey bee matrices, such as honey, pollen, beeswax, and bee bodies, highlighting the potential routes of exposure for these vital pollinators. Additionally, evidence suggests that microplastics can accumulate in honey bee tissues (brain, midgut, Malpighian tubules, trachea, and haemolymph) potentially leading to adverse effects on honey bee health, behaviour, and colony dynamics. Additionally, MPs has a synergistic impact on immune system as well. Change in cuticle profile, reduction in body weight, and changes in eating frequency can regulate overall success rate of their survival. However, significant knowledge gaps remain regarding the long-term consequences for honey bee populations and ecosystem health, which cannot unveil the ultimate degree of future threats. Future research efforts should focus on investigating the interactions between microplastics and other stressors, such as pesticides and pathogens, and assessing the broader ecological implications of honey bee contamination with microplastics. Addressing these knowledge gaps is essential for developing effective mitigation strategies to minimize the impact of microplastics on honey bee populations and safeguarding their vital role in ecosystem functioning and food security.
期刊介绍:
NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.